(本小題滿分12分)已知矩形ABCD中,AB=6,BC=,E為AD的中點(圖一)。沿BE將△ABE折起,使二面角A—BE—C為直二面角(圖二),且F為AC的中點。
(1)求證:FD//平面ABE;
(2)求二面角E-AB-C的余弦值。
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

本小題滿分14分)如圖,四棱錐E—ABCD中,ABCD是矩形,平面EAB平面ABCD,AE=EB=BC=2,F為CE上的點,
且BF平面ACE.
(1)求證:AEBE;
(2)求三棱錐D—AEC的體積;
(3)求二面角A—CD—E的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
在直三棱柱中,
D,F,G分別為的中點,
求證:;
求證:平面EFG//平面ABD;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)
如圖,已知直角梯形的上底,,,平面平面,是邊長為的等邊三角形。
(1)證明:;
(2)求二面角的大小。
(3)求三棱錐的體積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

空間三條射線PA,PB,PC滿足∠APC=∠APB=60°,∠BPC=90°,則二面角B-PA-C 的度數(shù)                                                                             
A.等于90°B.是小于120°的鈍角
C.是大于等于120°小于等于135°的鈍角D.是大于135°小于等于150°的鈍角

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

、圓臺上底半徑為5cm,下底半徑為10cm,母線AB=20cm,A在上底面上,B在下底面上,從AB中點M拉一條繩子,繞圓臺側(cè)面一周到B點,則繩子最短時長為_      ___

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在四棱錐P—ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB//DC,∠BCD=90°,E為棱PC上異于C的一點,DE⊥BE

(1)證明:E為PC的中點;
(2)求二面角P—DE—A的大小

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知兩條不同直線、,兩個不同平面、,給出下列命題:
①若垂直于內(nèi)的兩條相交直線,則;
②若,則平行于內(nèi)的所有直線;
③若,,則;
④若,則;
⑤若,,則
其中正確命題的序號是          .(把你認為正確命題的序號都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,D,E分別為三棱錐P—ABC的棱AP、AB上的點,且AD:DP=AE:EB=1:3.求證:DE//平面PBC

查看答案和解析>>

同步練習冊答案