【題目】德國著名數(shù)學(xué)家狄利克雷在數(shù)學(xué)領(lǐng)域成就顯著,以其名命名的函數(shù)被稱為狄利克雷函數(shù),其中為實(shí)數(shù)集,為有理數(shù)集,則關(guān)于函數(shù)有如下四個命題:①;②函數(shù)是偶函數(shù);③任取一個不為零的有理數(shù)對任意的恒成立;④存在三個點(diǎn),,,使得為等邊三角形.其中真命題的個數(shù)有(

A.1B.2C.3D.4

【答案】D

【解析】

根據(jù)所給的定義,運(yùn)用分類討論的方法、取特殊值法進(jìn)行逐一判斷即可.

①∵當(dāng)為有理數(shù)時,;當(dāng)為無理數(shù)時,,

∴當(dāng)為有理數(shù)時,;

當(dāng)為無理數(shù)時,,

即不管是有理數(shù)還是無理數(shù),均有,故①正確;

②∵有理數(shù)的相反數(shù)還是有理數(shù),無理數(shù)的相反數(shù)還是無理數(shù),

∴對任意,都有,故②正確;

③若是有理數(shù),則也是有理數(shù); 是無理數(shù),則也是無理數(shù),

∴根據(jù)函數(shù)的表達(dá)式,任取一個不為零的有理數(shù),恒成立,故③正確;

④取,,可得,,

,,恰好為等邊三角形,故④正確.

故選:D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)(其中),且曲線在點(diǎn)處的切線垂直于直線.

(1)求的值及此時的切線方程;

(2)求函數(shù)的單調(diào)區(qū)間與極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)若,,求的值域;

2)當(dāng)時,求的最小值

3)是否存在實(shí)數(shù)、,同時滿足下列條件:① ;② 當(dāng)的定義域?yàn)?/span>時,其值域?yàn)?/span>.若存在,求出、的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某電子產(chǎn)品生產(chǎn)企業(yè)生產(chǎn)一種產(chǎn)品,原計(jì)劃每天可以生產(chǎn)噸產(chǎn)品,每噸產(chǎn)品可以獲得凈利潤萬元,其中,由于受市場低迷的影響,該企業(yè)的凈利潤出現(xiàn)較大幅度下滑.為提升利潤,該企業(yè)決定每天投入20萬元作為獎金刺激生產(chǎn).在此方案影響下預(yù)計(jì)每天可增產(chǎn)噸產(chǎn)品,但是受原材料數(shù)量限制,增產(chǎn)量不會超過原計(jì)劃每天產(chǎn)量的四分之一.試求在每天投入20萬元獎金的情況下,該企業(yè)每天至少可獲得多少利潤(假定每天生產(chǎn)出來的產(chǎn)品都能銷售出去)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若定義在D上的函數(shù)f(x)滿足:對任意x∈D,存在常數(shù)M>0,都有-M<f(x)<M成立,則稱f(x)是D上的有界函數(shù),其中M稱為函數(shù)f(x)的上界。

(Ⅰ)判斷函數(shù)f(x)=-2x+2,x∈[0,2]是否是有界函數(shù),請說明理由;

(Ⅱ)若函數(shù)f(x)=1++,x∈[0,+∞)是以3為上界的有界函數(shù),求實(shí)數(shù)a的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某興趣小組有男生20人,女生10人,從中抽取一個容量為5的樣本,恰好抽到2名男生和3名女生,則

①該抽樣可能是系統(tǒng)抽樣;

②該抽樣可能是隨機(jī)抽樣:

③該抽樣一定不是分層抽樣;

④本次抽樣中每個人被抽到的概率都是

其中說法正確的為( )

A.①②③B.②③C.②③④D.③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)以往的經(jīng)驗(yàn),某建筑工程施工期間的降水量單位:對工期的影響如下表:

根據(jù)某氣象站的資料,某調(diào)查小組抄錄了該工程施工地某月前20天的降水量的數(shù)據(jù),繪制得到降水量的折線圖,如下圖所示.

(1)求這20天的平均降水量;

(2)根據(jù)降水量的折線圖,分別估計(jì)該工程施工延誤天數(shù)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)集(,)具有性質(zhì)P;對任意的i,j(),兩數(shù)中至少有一個屬于A.

(1)分別判斷數(shù)集是否具有性質(zhì)P,并說明理由;

(2)證明:,且;

(3)當(dāng)時,若,求集合A.

查看答案和解析>>

同步練習(xí)冊答案