已知C1的極坐標(biāo)方程為ρcos(θ-
π
4
)=1
,M,N分別為C1在直角坐標(biāo)系中與x軸,y軸的交點(diǎn).曲線C2的參數(shù)方程為
x=
t
-
1
t
y=4-(t+
1
t
)
(t為參數(shù),且t>0),P為M,N的中點(diǎn),求過OP(O為坐標(biāo)原點(diǎn))的直線與曲線C2所圍成的封閉圖形的面積.
曲線C1的直角坐標(biāo)方程為x+y-
2
=0
,(2分)
與x軸的交點(diǎn)為M(
2
,0),N(0,
2
)
,(3分)
消去參數(shù)t得到曲線C2的普通方程為y=2-x2;
直線OP:y=x,(6分)
直線OP與曲線C2的交點(diǎn)橫坐標(biāo)為x1=-2,x2=1,(8分)
則直線OP與曲線C2所圍成的封閉圖形的
面積為S=
-21
(2-x2-x)dx=(2x-
x3
3
-
x2
2
)
s-21
=
9
2
.(10分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知C1的極坐標(biāo)方程為ρcos(θ-
π
4
)=1
,M,N分別為C1在直角坐標(biāo)系中與x軸,y軸的交點(diǎn).曲線C2的參數(shù)方程為
x=
t
-
1
t
y=4-(t+
1
t
)
(t為參數(shù),且t>0),P為M,N的中點(diǎn).
(1)將C1,C2化為普通方程;
(2)求直線OP(O為坐標(biāo)原點(diǎn))被曲線C2所截得弦長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知C1的極坐標(biāo)方程為ρcos(θ-
π
4
)=1
,M,N分別為C1在直角坐標(biāo)系中與x軸,y軸的交點(diǎn).曲線C2的參數(shù)方程為
x=
t
-
1
t
y=4-(t+
1
t
)
(t為參數(shù),且t>0),P為M,N的中點(diǎn),求過OP(O為坐標(biāo)原點(diǎn))的直線與曲線C2所圍成的封閉圖形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知C1的極坐標(biāo)方程為ρcos(θ-
π
4
)=1
,M,N分別為C1在直角坐標(biāo)系中與x軸,y軸的交點(diǎn).曲線C2的參數(shù)方程為
x=
t
-
1
t
y=4-(t+
1
t
)
(t為參數(shù),且t>0),P為M,N的中點(diǎn).
(1)將C1,C2化為普通方程;
(2)求直線OP(O為坐標(biāo)原點(diǎn))被曲線C2所截得弦長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年黑龍江省哈爾濱九中高考數(shù)學(xué)四模試卷(理科)(解析版) 題型:解答題

已知C1的極坐標(biāo)方程為,M,N分別為C1在直角坐標(biāo)系中與x軸,y軸的交點(diǎn).曲線C2的參數(shù)方程為(t為參數(shù),且t>0),P為M,N的中點(diǎn),求過OP(O為坐標(biāo)原點(diǎn))的直線與曲線C2所圍成的封閉圖形的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案