函數(shù)f(x)=-x2+2x,x∈[-1,3],則任取一點x0∈[-1,3],使得f(x0)≥0的概率為
 
考點:幾何概型
專題:概率與統(tǒng)計
分析:解不等式f(x0)≥0,求出滿足條件的x0的取值范圍,利用幾何概型的概率公式即可得到結(jié)論.
解答: 解:由f(x0)≥0得-x02+2x0≥0,解得0≤x0≤2,
則有幾何概型的概率公式可知f(x0)≥0的概率是
2-0
3-(-1)
=
2
4
=
1
2
,
故答案為:
1
2
點評:本題主要考查幾何概型的概率的計算,根據(jù)一元二次不等式的解法求出不等式的解是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
ln(x+1)
ax+1

(1)當(dāng)a=1,求函數(shù)y=f(x)的圖象在x=0處的切線方程;
(2)若函數(shù)f(x)在(0,1)上單調(diào)遞增,求實數(shù)a的取值范圍;
(3)已知x,y,z均為正實數(shù),且x+y+z=1,求證:
(3x-1)ln(x+1)
x-1
+
(3y-1)ln(y+1)
y-1
+
(3z-1)ln(z+1)
z-1
≤0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點F1(-1,0),F(xiàn)2(1,0)分別是橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點,點P(1,
2
2
)在橢圓上C上.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)直線l1:y=kx+m,l2:y=kx-m,若l1、l2均與橢圓C相切,試探究在x軸上是否存在定點M,點M到l1,l2的距離之積恒為1?若存在,請求出點M坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,PA與圓O相切于A,不過圓心O的割線PCB與直徑AE相交于D點.已知∠BPA=30°,AD=2,PC=1,則圓O的半徑等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x|x|+bx+c,給出四個命題:上述四個命題中所有正確的命題序號是
 

①c=0時,有f(-x)=-f(x)成立;
②b=0,c>0時,函數(shù)y=f(x)只有一個零點;
③y=f(x)的圖象關(guān)于點(0,c)對稱;
④函數(shù)y=f(x),至多有兩個不同零點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在區(qū)間[-2,3]上任取一個數(shù)a,則函數(shù)f(x)=
1
3
x3-ax2+(a+2)x有極值的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知甲盒內(nèi)有大小相同的1個紅球和3個黑球,乙盒內(nèi)有大小相同的2個紅球和4個黑球.現(xiàn)從甲、乙兩個盒內(nèi)各任取2個球.設(shè)ξ為取出的4個球中紅球的個數(shù),則ξ的數(shù)學(xué)期望Eξ=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

假設(shè)在時間間隔T內(nèi)的任何時刻,兩條不相關(guān)的短信機(jī)會均等地進(jìn)入同一臺手機(jī).若這兩條短信進(jìn)入手機(jī)的間隔時間不大于t(0<t<T)稱手機(jī)受到干擾,則手機(jī)受到干擾的概率是(  )
A、(
t
T
2
B、(1-
t
T
2
C、1-(
t
T
2
D、1-(1-
t
T
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線C:
x2
a2
-
y2
b2
=1(a,b>0)
的一條漸近線方程是y=
1
2
x
,它的一個焦點在拋物線y2=4
5
x
的準(zhǔn)線上,點A(x1,y1),B(x2,y2)是雙曲線C右支上相異兩點,且滿足x1+x2=6,D為線段AB的中點,直線AB的斜率為k.
(Ⅰ)求雙曲線C的方程;
(Ⅱ)用k表示點D的坐標(biāo);
(Ⅲ)若k>0,AB的中垂線交x軸于點M,直線AB交x軸于點N,求△DMN的面積的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案