【題目】某農(nóng)場(chǎng)計(jì)劃種植某種新作物,為此對(duì)這種作物的兩個(gè)品種(分別稱為品種甲和品種乙)進(jìn)行田間試驗(yàn).選取兩大塊地,每大塊地分成小塊地,在總共小塊地中.隨機(jī)選小塊地種植品種甲,另外小塊地種植品種乙.

)假設(shè),求第一大塊地都種植品種甲的概率.

)試驗(yàn)時(shí)每大塊地分成小塊.即,試驗(yàn)結(jié)束后得到品種甲和品種乙在各個(gè)小塊地上的每公頃產(chǎn)量(單位)如下表:

品種甲

品種乙

分別求品種甲和品種乙的每公頃產(chǎn)量的樣本平均數(shù)和樣本方差;根據(jù)試驗(yàn)結(jié)果,你認(rèn)為應(yīng)該種植哪一品種?

【答案】(1);(2)見(jiàn)解析.

【解析】試題分析:(1)由古典概型的公式得到從小塊地中任選小塊地種植品種甲的基本事件有6件,第一大塊地都種品種甲件數(shù)1件,故得到概率為;(2)根據(jù)圖標(biāo)得到相應(yīng)的平均數(shù)和方差,可分析出結(jié)果.

解析:

)設(shè)第一大塊地中的兩小塊地編號(hào)為,

第二大塊地中的兩小塊地編號(hào)為, ,

令事件 “第一大塊地都種品種甲”,從小塊地中任選小塊地種植品種甲的基本事件有:

, , , , 個(gè),

而事件包含個(gè)基本事件:

)品種甲的每公頃產(chǎn)量的樣本平均數(shù)和方差分別為:

,

,

品種乙的每公頃產(chǎn)量的樣本平均數(shù)和方差分別為:

,

由以上結(jié)果可以看出,品種乙的樣本平均數(shù)大于品種甲的樣本平均數(shù),且兩品種的樣本方差相同,故應(yīng)選擇種植品種乙.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】采用系統(tǒng)抽樣方法從人中抽取人做問(wèn)卷調(diào)查,為此將他們隨機(jī)編號(hào)為,,分組后某組抽到的號(hào)碼為41.抽到的人中,編號(hào)落入?yún)^(qū)間 的人數(shù)為( )

A. 10 B. C. 12 D. 13

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】求下列函數(shù)的最值

1)求函數(shù)的最小值.

2)求函數(shù)的最小值.

3)設(shè),,若,求的最小值.

4)若正數(shù),滿足,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)是雙曲線C的左,右焦點(diǎn),O是坐標(biāo)原點(diǎn)過(guò)C的一條漸近線的垂線,垂足為P,若,則C的離心率為  

A. B. 2 C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù), .

(1)討論的單調(diào)性;

(2)當(dāng)時(shí),記的最小值為,證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】解關(guān)于的不等式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】輪船在海上航行時(shí),需要借助無(wú)線電導(dǎo)航確認(rèn)自己所在的位置,以把握航向.現(xiàn)有、三個(gè)無(wú)線電發(fā)射臺(tái),其中在陸地上,在海上,在某國(guó)海岸線上,(該國(guó)這段海岸線可以近似地看作直線的一部分),如下圖.已知兩點(diǎn)距離10千米,的中點(diǎn),海岸線與直線的夾角為.為保證安全,輪船的航路始終要滿足:接收到點(diǎn)的信號(hào)比接收到點(diǎn)的信號(hào)晚秒.(注:無(wú)線電信號(hào)每秒傳播千米).在某時(shí)刻,測(cè)得輪船距離點(diǎn)距離為4千米.

(1)以點(diǎn)為原點(diǎn),直線軸建立平面直角坐標(biāo)系(如圖),求出該時(shí)刻輪船的位置;

(2)根據(jù)經(jīng)驗(yàn),船只在距離海岸線1.5千米以內(nèi)的海域航行時(shí),有擱淺的風(fēng)險(xiǎn).如果輪船保持目前的航路不變,那么是否有擱淺風(fēng)險(xiǎn)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】是各項(xiàng)均為正數(shù)的數(shù)列的前項(xiàng)和,且.

1)求的值;

2)設(shè),且數(shù)列的前項(xiàng)和滿足對(duì)任意正整數(shù)恒成立,求實(shí)數(shù)的取值范圍;

3)設(shè),問(wèn):是否存在正整數(shù),使得對(duì)一切正整數(shù)恒成立?若存在,請(qǐng)求出實(shí)數(shù)的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某物流公司引進(jìn)了一套無(wú)人智能配貨系統(tǒng),購(gòu)買系統(tǒng)的費(fèi)用為80萬(wàn)元,維持系統(tǒng)正常運(yùn)行的費(fèi)用包括保養(yǎng)費(fèi)和維修費(fèi)兩部分,每年的保養(yǎng)費(fèi)用為1萬(wàn)元.該系統(tǒng)的維修費(fèi)為:第一年萬(wàn)元,第二年萬(wàn)元,第三年2萬(wàn)元,,依等差數(shù)列逐年遞增.

1)求該系統(tǒng)使用n年的總費(fèi)用(包括購(gòu)買設(shè)備的費(fèi)用);

2)求該系統(tǒng)使用多少年報(bào)廢,使年平均費(fèi)用最少.

查看答案和解析>>

同步練習(xí)冊(cè)答案