已知拋物線:上橫坐標(biāo)為4的點(diǎn)到焦點(diǎn)的距離為5.
(Ⅰ)求拋物線的方程;
(Ⅱ)設(shè)直線與拋物線交于不同兩點(diǎn),若滿足,證明直線恒過(guò)定點(diǎn),并求出定點(diǎn)的坐標(biāo).
(Ⅲ)試把問(wèn)題(Ⅱ)的結(jié)論推廣到任意拋物線:中,請(qǐng)寫(xiě)出結(jié)論,不用證明.
(1)
(2)
(3)

試題分析:.解:(Ⅰ)依題意得:,解得
所以拋物線方程為.   3分
(Ⅱ) 設(shè)
由條件可知直線的斜率不為0,可設(shè)直線,代入得:,
,則
,,符合,
直線,即直線恒過(guò)定點(diǎn). 10分
(Ⅲ)設(shè)直線與拋物線交于不同兩點(diǎn),若滿足,則直線恒過(guò)定點(diǎn).  13分
點(diǎn)評(píng):主要是考查了直線與拋物線的位置關(guān)系的運(yùn)用,屬于基礎(chǔ)題。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知直線與平面平行,P是直線上的一定點(diǎn),平面內(nèi)的動(dòng)點(diǎn)B滿足:PB與直線 。那么B點(diǎn)軌跡是 (    )                          
A.橢圓B.雙曲線C.拋物線D.兩直線

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知直線交橢圓兩點(diǎn),橢圓與軸的正半軸交于點(diǎn),若的重心恰好落在橢圓的右焦點(diǎn)上,則直線的方程是(      )
A. B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知點(diǎn)是直角坐標(biāo)平面內(nèi)的動(dòng)點(diǎn),點(diǎn)到直線(是正常數(shù))的距離為,到點(diǎn)的距離為,且1.
(1)求動(dòng)點(diǎn)P所在曲線C的方程;
(2)直線過(guò)點(diǎn)F且與曲線C交于不同兩點(diǎn)A、B,分別過(guò)A、B點(diǎn)作直線的垂線,對(duì)應(yīng)的垂足分別為,求證=
(3)記,
(A、B、是(2)中的點(diǎn)),,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,橢圓的右焦點(diǎn)與拋物線的焦點(diǎn)重合,過(guò)作與軸垂直的直線與橢圓交于S、T兩點(diǎn),與拋物線交于C、D兩點(diǎn),且

(Ⅰ)求橢圓的方程;
(Ⅱ)若過(guò)點(diǎn)的直線與橢圓相交于兩點(diǎn),設(shè)為橢圓上一點(diǎn),且滿足為坐標(biāo)原點(diǎn)),當(dāng)時(shí),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

雙曲線的虛軸長(zhǎng)是實(shí)軸長(zhǎng)的2倍,則m等于             

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如果方程表示焦點(diǎn)在y軸上的橢圓,則實(shí)數(shù)k的取值范圍是(   )
A.(0,+∞)B.(0,2)C.(1,+∞)D.(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

橢圓的右焦點(diǎn)為為常數(shù),離心率為,過(guò)焦點(diǎn)、傾斜角為的直線交橢圓與M,N兩點(diǎn),
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)當(dāng)=時(shí),=,求實(shí)數(shù)的值;
(3)試問(wèn)的值是否與直線的傾斜角的大小無(wú)關(guān),并證明你的結(jié)論

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知兩條直線 :y="m" 和: y=(m>0),與函數(shù)的圖像從左至右相交于點(diǎn)A,B ,與函數(shù)的圖像從左至右相交于C,D .記線段AC和BD在X軸上的投影長(zhǎng)度分別為a ,b ,當(dāng)m 變化時(shí),的最小值為
A.           B.        C.    D.

查看答案和解析>>

同步練習(xí)冊(cè)答案