已知雙曲線
的漸近線與圓
有公共點,則該雙曲線的離心率的取值范圍是___________.
試題分析:雙曲線的漸近線
,且與圓有公共點,所以圓心
到漸近線的距離
,所以
,故
.
又因為雙曲線
,故
.
點評:本題主要考查雙曲線的標(biāo)準(zhǔn)方程,簡單幾何性質(zhì),直線與雙曲線的位置關(guān)系,圓的簡單性質(zhì)等基礎(chǔ)知識.考查運(yùn)算求解能力,推理論證能力;考查函數(shù)與方程思想,化歸與轉(zhuǎn)化思想.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓
的左頂點
,過右焦點
且垂直于長軸的弦長為
.
(Ⅰ)求橢圓
的方程;
(Ⅱ)若過點
的直線
與橢圓交于點
,與
軸交于點
,過原點與
平行的直線與橢圓交于點
,求證:
為定值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知動點
到點
的距離與到直線
的距離之比為定值
,記
的軌跡為
.
(1)求
的方程,并畫出
的簡圖;
(2)點
是圓
上第一象限內(nèi)的任意一點,過
作圓的切線交軌跡
于
,
兩點.
(i)證明:
;
(ii)求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知平面上動點P(
)及兩個定點A(-2,0),B(2,0),直線PA、PB的斜率分別為
、
且
(I)求動點P所在曲線C的方程。
(II)設(shè)直線
與曲線C交于不同的兩點M、N,當(dāng)OM⊥ON時,求點O到直線
的距離。(O為坐標(biāo)原點)
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
若雙曲線
(
,
)的一條漸近線被圓
截得的弦長為
,則雙曲線的離心率為
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知中心在原點的橢圓與雙曲線有公共焦點,左、右焦點分別為
,且兩條曲線在第一象限的交點為
,
是以
為底邊的等腰三角形,若
,橢圓與雙曲線的離心率分別為
,
,則
的取值范圍是( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
拋物線
的焦點坐標(biāo)是( )
A. | B.(1,0) | C. | D.(0,1) |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知拋物線
,的焦點為F,直線
與拋物線
C交于
A、
B兩點,則
( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
由直線
:
上的點向圓C:
引切線,
求切線段長的最小值。
查看答案和解析>>