圓x2+y2=r2在點(x0,y0)處的切線方程為x0x+y0y=r2,類似地,可以求得橢圓
x2
32
+
y2
8
=1在(4,2)處的切線方程為( 。
A、
x
4
+
y
8
=0
B、
x
4
+
y
8
=1
C、
x
8
+
y
4
=1
D、
x
8
+
y
4
=0
考點:類比推理
專題:計算題,推理和證明
分析:由過圓x2+y2=r2上一點的切線方程x0x+y0y=r2,我們不難類比推斷出過橢圓上一點的切線方程:用x0x代x2,用y0y代y2,即可得.
解答: 解:圓C的方程為x2+y2=r2
則有過圓C上一點(x0,y0)作圓C的切線方程為x0x+y0y=r2,
類比這一結論,若橢圓C′的方程為
x2
32
+
y2
8
=1,
則有過橢圓C′上的一點(4,2)作橢圓的切線方程為
4x
32
+
2y
8
=1

整理,得:
x
8
+
y
4
=1.
故選:C.
點評:本題考查利用類比推理得到結論、證明類比結論時證明過程與其類比對象的證明過程類似或直接轉化為類比對象的結論.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系中,如果x與y都是整數(shù),就稱(x,y)為整點,下列命題中正確的是
 
(寫出所有正確命題的編號).
①存在這樣的直線,既不與坐標軸平行,又不經(jīng)過任何整點;
②如果k與b都是無理數(shù),則直線y=kx+b不經(jīng)過任何整點;
③直線y=kx+b經(jīng)過無窮多個整點的充分必要條件是:k與b都是無理數(shù);
④過函數(shù)y=
9-x2
圖象上任意兩個整點作直線,則直線的條數(shù)為3條.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知兩個非零向量
a
b
,定義|
a
×
b
|=|
a
||
b
|sinθ,其中θ為
a
b
的夾角,若
a
=(0,2),
b
=(-3,4),則|
a
×
b
|的值為(  )
A、-8B、-6C、8D、6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=-x2+2x+3的圖象的頂點坐標是( 。
A、(-1,4)
B、(-1,-4)
C、(1,-4)
D、(1,4)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知i為虛數(shù)單位,則i(3i-1)等于(  )
A、3-iB、3+i
C、-3+iD、-3-i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=
1
2
(ax+a-x)和g(x)=
1
2
(ax-a-x)的奇偶性為( 。
A、都是偶函數(shù)
B、都是奇函數(shù)
C、f(x)是奇函數(shù),g(x)是偶函數(shù)
D、f(x)是偶函數(shù),g(x)是奇函數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
a•ex,x≤0
-lnx,x>0
,其中e為自然對數(shù)的底數(shù),若關于x的方程f(f(x))=0有且只有一個實數(shù)解,則a實數(shù)的取值范圍是( 。
A、(-∞,0)
B、(-∞,0)∪(0,1)
C、(0,1)
D、(0,1)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如果函數(shù)y=f(x-2)是偶函數(shù),那么函數(shù)y=f(
1
2
x)的圖象的一條對稱軸是直線( 。
A、x=-4
B、x=-2
C、x=
1
4
D、x=
1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若直線l的傾斜角α滿足0°≤α<150°,且α≠90°,則它的斜率k滿足( 。
A、-
3
3
<k≤0
B、k>-
3
3
C、k≥0或k<-
3
D、k≥0或k<-
3
3

查看答案和解析>>

同步練習冊答案