精英家教網 > 高中數學 > 題目詳情
如圖,橢圓C1
x2
a2
+
y2
b2
=1
(a>b>0)和圓C2:x2+y2=b2,已知圓C2將橢圓C1的長軸三等分,橢圓C1右焦點到右準線的距離為
2
4
,橢圓C1的下頂點為E,過坐標原點O且與坐標軸不重合的任意直線l與圓C2相交于點A、B.
(1)求橢圓C1的方程;
(2)若直線EA、EB分別與橢圓C1相交于另一個交點為點P、M.
①求證:直線MP經過一定點;
②試問:是否存在以(m,0)為圓心,
3
2
5
為半徑的圓G,使得直線PM和直線AB都與圓G相交?若存在,請求出所有m的值;若不存在,請說明理由.
分析:(1)由圓C2將橢圓C1的長軸三等分,可得2b=
1
3
•2a
;又橢圓C1右焦點到右準線的距離為
2
4
,可得
a2
c
-c=
2
4
,及a2=b2+c2即可得出;
(2)①由題意知直線PE,ME的斜率存在且不為0,設直線PE的斜率為k,則PE:y=kx-1,與橢圓的方程聯立可得點P的坐標,同理可得點M的坐標,進而得到直線PM的方程,可得直線PM過定點.
②由直線PE的方程與圓的方程聯立可得點A的坐標,進而得到直線AB的方程.假設存在圓心為(m,0),半徑為
3
2
5
的圓G,使得直線PM和直線AB都與圓G相交,則圓心到二直線的距離都小于半徑
3
2
5
.即(i)
|5tm|
1+25t2
3
2
5
,(ii)
|tm+
4
5
|
1+t2
3
2
5
.得出m的取值范圍存在即可.
解答:解:(1)由圓C2將橢圓C1的長軸三等分,∴2b=
1
3
•2a
,則a=3b.
c=
a2-b2
=2
2
b

又橢圓C1右焦點到右準線的距離為
2
4
,
a2
c
-c=
b2
c
=
2
4
,∴b=1,則a=3,
∴橢圓方程為
x2
9
+y2=1

(2)①由題意知直線PE,ME的斜率存在且不為0,設直線PE的斜率為k,則PE:y=kx-1,
y=kx-1
x2
9
+y2=1
x=
18k
9k2+1
y=
9k2-1
9k2+1
x=0
y=-1

P(
18k
9k2+1
,
9k2-1
9k2+1
)

-
1
k
去代k,得M(
-18k
k2+9
,
9-k2
k2+9
)
,
kPM=
9k2-1
9k2+1
-
9-k2
k2+9
18k
9k2+1
+
18k
k2+9
=
k2-1
10k

∴PM:y-
9-k2
k2+9
=
k2-1
10k
(x+
18k
k2+9
)
,即y=
k2-1
10k
x+
4
5

∴直線PM經過定點T(0,
4
5
)

②由
y=kx-1
x2+y2=1
x=
2k
1+k2
y=
k2-1
k2+1
x=0
y=-1

A(
2k
1+k2
,
k2-1
k2+1
)
,
則直線AB:y=
k2-1
2k
x
,
t=
k2-1
10k
,則t∈R,直線PM:y=tx+
4
5
,直線AB:y=5tx,
假設存在圓心為(m,0),半徑為
3
2
5
的圓G,使得直線PM和直線AB都與圓G相交,
則(i)
|5tm|
1+25t2
3
2
5
,(ii)
|tm+
4
5
|
1+t2
3
2
5

由(i)得25t2(m2-
18
25
)<
18
25
對t∈R恒成立,則m2
18
25
,
由(ii)得,(m2-
18
25
)t2+
8
5
mt-
2
25
<0
對t∈R恒成立,
m2=
18
25
時,不合題意;當m2
18
25
時,△=(
8
5
m)2-4(m2-
18
25
)(-
2
25
)<0
,得m2
2
25
,即-
2
5
<m<
2
5

∴存在圓心為(m,0),半徑為
3
2
5
的圓G,使得直線PM和直線AB都與圓G相交,所有m的取值集合為(-
2
5
,
2
5
)
點評:本題考查了橢圓的標準方程及其性質、直線與橢圓相交問題轉化為方程聯立得到交點的坐標、直線與圓相交問題轉化為圓心到直線距離小于半徑、點到直線的距離公式、恒成立問題的等價轉化等基礎知識與攪拌機能力、考查了推理能力、計算能力,屬于難題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網如圖,拋物線C1:x2=2py(p>0)的焦點為F,橢圓C2
x2
a2
+
y2
b2
=1
(a>b>0)的離心率e=
3
2
,C1與C2在第一象限的交點為P(
3
1
2

(1)求拋物線C1及橢圓C2的方程;
(2)已知直線l:y=kx+t(k≠0,t>0)與橢圓C2交于不同兩點A、B,點M滿足
AM
+
BM
=
0
,直線FM的斜率為k1,試證明k•k1
-1
4

查看答案和解析>>

科目:高中數學 來源: 題型:

精英家教網如圖,橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
3
2
,x軸被曲線C2:y=x2-b截得的線段長等于C1的長半軸長.
(Ⅰ)求C1,C2的方程;
(Ⅱ)設C2與y軸的交點為M,過坐標原點O的直線l與C2相交于點A、B,直線MA,MB分別與C1相交于D,E.
(i)證明:MD⊥ME;
(ii)記△MAB,△MDE的面積分別是S1,S2.問:是否存在直線l,使得
S1
S2
=
17
32
?請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•楊浦區(qū)二模)如圖,橢圓C1
x2
4
+y2=1,x軸被曲線C2:y=x2-b截得的線段長等于C1的長半軸長.
(1)求實數b的值;
(2)設C2與y軸的交點為M,過坐標原點O的直線l與C2相交于點A、B,直線MA、MB分別與C1相交與D、E.
①證明:MD•ME=0;
②記△MAB,△MDE的面積分別是S1,S2.若
S1
S2
=λ,求λ的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖過拋物線C1x2=4y的對稱軸上一點P(0,m)(m>0)作直線l與拋物線交于A(x1,y1),B(x2,y2)兩點,點Q是P關于原點的對稱點,以P,Q為焦點的橢圓為C2
(1)求證:x1x2為定值;
(2)若l的方程為x-2y+4=0,且C1,C2以及直線l有公共點,求C2的方程;
(3)設
AP
PB
,若
QP
⊥(
QA
QB
)
,求證:λ=μ

查看答案和解析>>

同步練習冊答案