記Sn是等差數(shù)列{an}前n項的和,Tn是等比數(shù)列{bn}前n項的積,設等差數(shù)列{an}公差d≠0,若對小于2 011的正整數(shù)n,都有Sn=S2 011-n成立,則推導出a1 006=0,設等比數(shù)列{bn}的公比q≠1,若對于小于23的正整數(shù)n,都有Tn=T23-n成立,則(  )

(A)b11=1  (B)b12=1

(C)b13=1  (D)b14=1

B.由等差數(shù)列中Sn=S2 011-n,可導出中間項a1 006=0,類比得等比數(shù)列中Tn=T23-n,可導出中間項b12=1.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

記Sn是等差數(shù)列{an}前n項的和,Tn是等比數(shù)列{bn}前n項的積,設等差數(shù)列{an}公差d≠0,若對小于2011的正整數(shù)n,都有Sn=S2011-n成立,則推導出a1006=0,設等比數(shù)列{bn}的公比q≠1,若對于小于23的正整數(shù)n,都有Tn=T23-n成立,則( 。
A、b11=1B、b12=1C、b13=1D、b14=1

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年湖北省鄂州二中高三(上)10月段考數(shù)學試卷(解析版) 題型:選擇題

記Sn是等差數(shù)列{an}前n項的和,Tn是等比數(shù)列{bn}前n項的積,設等差數(shù)列{an}公差d≠0,若對小于2011的正整數(shù)n,都有Sn=S2011-n成立,則推導出a1006=0,設等比數(shù)列{bn}的公比q≠1,若對于小于23的正整數(shù)n,都有Tn=T23-n成立,則( )
A.b11=1
B.b12=1
C.b13=1
D.b14=1

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年湖北省孝感市安陸一中高三數(shù)學選填題專項訓練(二)(解析版) 題型:選擇題

記Sn是等差數(shù)列{an}前n項的和,Tn是等比數(shù)列{bn}前n項的積,設等差數(shù)列{an}公差d≠0,若對小于2011的正整數(shù)n,都有Sn=S2011-n成立,則推導出a1006=0,設等比數(shù)列{bn}的公比q≠1,若對于小于23的正整數(shù)n,都有Tn=T23-n成立,則( )
A.b11=1
B.b12=1
C.b13=1
D.b14=1

查看答案和解析>>

科目:高中數(shù)學 來源:2011年海南省海口市高考數(shù)學調(diào)研試卷(理科)(解析版) 題型:選擇題

記Sn是等差數(shù)列{an}前n項的和,Tn是等比數(shù)列{bn}前n項的積,設等差數(shù)列{an}公差d≠0,若對小于2011的正整數(shù)n,都有Sn=S2011-n成立,則推導出a1006=0,設等比數(shù)列{bn}的公比q≠1,若對于小于23的正整數(shù)n,都有Tn=T23-n成立,則( )
A.b11=1
B.b12=1
C.b13=1
D.b14=1

查看答案和解析>>

同步練習冊答案