【題目】在極坐標系中,圓C的方程為ρ=2 sin ,以極點為坐標原點,極軸為x軸的正半軸建立平面直角坐標系,直線l的參數(shù)方程為 (t為參數(shù)),判斷直線l和圓C的位置關系.
【答案】解:消去參數(shù)t,得直線l的直角坐標方程為y=2x+1;
ρ=2 ,即ρ=2(sinθ+cosθ),
兩邊同乘以ρ得ρ2=2(ρsinθ+ρcosθ),
得⊙C的直角坐標方程為:(x-1)2+(x-1)2=2,
圓心C到直線l的距離d= ,所以直線l和⊙C相交.
【解析】把直線的參數(shù)方程化為普通方程,圓的極坐標方程化為直角坐標方程,利用圓心到直線的距離與圓的半徑對比,判斷直線與圓的位置關系.
【考點精析】根據(jù)題目的已知條件,利用極坐標系和直線的參數(shù)方程的相關知識可以得到問題的答案,需要掌握平面內取一個定點O,叫做極點;自極點O引一條射線OX叫做極軸;再選定一個長度單位、一個角度單位(通常取弧度)及其正方向(通常取逆時針方向),這樣就建立了一個極坐標系;經(jīng)過點,傾斜角為的直線的參數(shù)方程可表示為(為參數(shù)).
科目:高中數(shù)學 來源: 題型:
【題目】輪船A從某港口O將一些物品送到正航行的輪船B上,在輪船A出發(fā)時,輪船B位于港口O北偏西30°且與O相距20海里的P處,并正以30海里/小時的航速沿正東方向勻速行駛,假設輪船A沿直線方向以V海里/小時的航速勻速行駛,經(jīng)過t小時與輪船B相遇.
(1)若使相遇時輪船A航距最短,則輪船A的航行速度大小應為多少?
(2)假設輪船A的最高航行速度只能達到30海里/小時,則輪船A以多大速度及什么航行方向才能在最短時間與輪船B相遇,并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某省2016年高中數(shù)學學業(yè)水平測試的原始成績采用百分制,發(fā)布成績使用等級制.各等級劃分標準如下:85分及以上,記為A等;分數(shù)在[70,85)內,記為B等;分數(shù)在[60,70)內,記為C等;60分以下,記為D等.同時認定A,B,C為合格,D為不合格.已知某學校學生的原始成績均分布在[50,100]內,為了了解該校學生的成績,抽取了50名學生的原始成績作為樣本進行統(tǒng)計,按照[50,60),[60,70),[70,80),[80,90),[90,100]的分組作出樣本頻率分布直方圖如圖所示.
(Ⅰ)求圖中x的值,并根據(jù)樣本數(shù)據(jù)估計該校學生學業(yè)水平測試的合格率;
(Ⅱ)在選取的樣本中,從70分以下的學生中隨機抽取3名學生進行調研,用X表示所抽取的3名學生中成績?yōu)镈等級的人數(shù),求隨機變量X的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一個多面體的直觀圖、正視圖、側視圖、俯視圖如圖,M,N分別為A1B,B1C1的中點.
下列結論中正確的個數(shù)有 ( )
①直線MN與A1C相交.
②MN⊥BC.
③MN∥平面ACC1A1.
④三棱錐N-A1BC的體積為=a3.
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】數(shù)列{an}中,定義:dn=an+2+an﹣2an+1(n≥1),a1=1.
(1)若dn=an , a2=2,求an;
(2)若a2=﹣2,dn≥1,求證此數(shù)列滿足an≥﹣5(n∈N*);
(3)若|dn|=1,a2=1且數(shù)列{an}的周期為4,即an+4=an(n≥1),寫出所有符合條件的{dn}.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù) .
(1)求函數(shù) 的單調區(qū)間和極值;
(2)是否存在實數(shù) ,使得函數(shù) 在 上的最小值為 ?若存在,求出 的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com