(05年浙江卷文)(14分)

如圖,已知橢圓的中心在坐標原點,焦點F1,F(xiàn)2在x軸上,長軸A1A2的長為4,左準線l與x軸的交點為M,|MA1|∶|A1F1|=2∶1.

   (Ⅰ)求橢圓的方程;

   (Ⅱ)若點P為l上的動點,求∠F1PF2最大值.

解析:(Ⅰ)設橢圓的方程為(a>0,b>0),半焦距為c,則|MA1|=,|A1F1|=a-c
由題意,得∴a=2,b=,c=1.

故橢圓的方程為

(Ⅱ)設P(-4,y0),y0≠0,

∴只需求tan∠F1PF2的最大值即可.

設直線PF1的斜率k1=,直線PF2的斜率k2=,

∵0<∠F1PF2<∠PF1M<,∴∠F1PF2為銳角.

∴tan∠F1PF2=

當且僅當,即|y0|=時,tan∠F1PF2取到最大值此時∠F1PF2最大,∴

∠F1PF2的最大值為arctan.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(08年西安市第一中學五模理)(12分) 已知長度為的線段的兩端點在拋物線上移動,求線段的中點的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(09年江蘇百校樣本分析)(10分)挑選空軍飛行學員可以說是“萬里挑一”,要想通過需過“五關”――目測、初檢、復檢、文考、政審等. 某校甲、乙、丙三個同學都順利通過了前兩關,有望成為光榮的空軍飛行學員. 根據(jù)分析,甲、乙、丙三個同學能通過復檢關的概率分別是0.5,0.6,0.75,能通過文考關的概率分別是0.6,0.5,0.4,通過政審關的概率均為1.后三關相互獨立.

(1)求甲、乙、丙三個同學中恰有一人通過復檢的概率;

(2)設通過最后三關后,能被錄取的人數(shù)為,求隨機變量的期望

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(08年周至二中三模理) 已知等差數(shù)列{an}的公差為2,若a1,a3,a4成等比數(shù)列,則a2等于         (    )

(A)-4   (B)-6     (C)-8     (D)-10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(08年濰坊市六模) (12分)已知,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(08年濱州市質檢三文)(12分)已知函數(shù).

   (I)當m>0時,求函數(shù)的單調遞增區(qū)間;

   (II)是否存在小于零的實數(shù)m,使得對任意的,都有,若存在,求m的范圍;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案