7.過定點(diǎn)(-2,0)的直線l與曲線C:(x-2)2+y2=4(0≤x≤3)交于不同的兩點(diǎn),則直線l的斜率的取值范圍是$({-\frac{{\sqrt{3}}}{3},-\frac{{\sqrt{3}}}{5}}]∪[{\frac{{\sqrt{3}}}{5},\frac{{\sqrt{3}}}{3}})$.

分析 畫出圖形,判斷直線與曲線有兩個(gè)交點(diǎn)的范圍即可.

解答 解:過定點(diǎn)(-2,0)的直線l與曲線C:(x-2)2+y2=4(0≤x≤3)交于不同的兩點(diǎn),如圖:
可得:k∈[kBQ,kAQ).
B(3,$\sqrt{3}$),kBQ=$\frac{\sqrt{3}-0}{3+2}$=$\frac{\sqrt{3}}{5}$,
|AQ|=$\sqrt{16-4}$=2$\sqrt{3}$,kAQ=$\frac{2}{2\sqrt{3}}$=$\frac{\sqrt{3}}{3}$,
由對稱性可知:直線的斜率的范圍:$({-\frac{{\sqrt{3}}}{3},-\frac{{\sqrt{3}}}{5}}]∪[{\frac{{\sqrt{3}}}{5},\frac{{\sqrt{3}}}{3}})$.
故答案為:$({-\frac{{\sqrt{3}}}{3},-\frac{{\sqrt{3}}}{5}}]∪[{\frac{{\sqrt{3}}}{5},\frac{{\sqrt{3}}}{3}})$.

點(diǎn)評 本題考查直線與曲線交點(diǎn)問題,考查數(shù)形結(jié)合以及轉(zhuǎn)化思想的應(yīng)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=ax-lnx(a∈R).
(Ⅰ)若方程f(x)=0有兩根x1,x2,求a的取值范圍;
(Ⅱ)在(Ⅰ)的前提下,設(shè)x1<x2,求證:$\frac{x_2}{x_1}$隨著a的減小而增大;
(Ⅲ)若不等式f(x)≥a恒成立,求證:${(\frac{1}{n})^n}+{(\frac{2}{n})^n}+{(\frac{3}{n})^n}+…+{(\frac{n}{n})^n}<a+\frac{1}{{{e}-a}}$(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.某程序框圖如圖所示,若輸出的S=29,則判斷框內(nèi)應(yīng)填(  )
A.k>5?B.k>4?C.k>7?D.k>6?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知函數(shù)f(x)=$\frac{{lnx+{{(x-b)}^2}}}{x}$,若存在x∈[$\frac{1}{2}$,2],使得xf'(x)+f(x)>0,則實(shí)數(shù)b的取值范圍是(  )
A.$(-∞,\frac{3}{2})$B.$(-∞,\frac{3}{2}]$C.$(-∞,\frac{9}{4})$D.$(-∞,\frac{9}{4}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=Msin(ωx+φ)$(M>0,|φ|<\frac{π}{2},0<ω<3)$圖象上的一個(gè)最高點(diǎn)為$(\frac{2}{3}π,2)$,函數(shù)f(x)圖象與y軸交點(diǎn)為(0,1).
(Ⅰ)求M,ω,φ的值;
(Ⅱ)在△ABC中,內(nèi)角A,B,C所對的邊分別是a,b,c,滿足(2a-c)cosB=bcosC,求函數(shù)f(A)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.如圖,平面PAB⊥平面α,AB?α,且△PAB為正三角形,點(diǎn)D是平面α內(nèi)的動(dòng)點(diǎn),ABCD是菱形,點(diǎn)O為AB中點(diǎn),AC與OD交于點(diǎn)Q,I?α,且l⊥AB,則PQ與I所成角的正切值的最小值為( 。
A.$\sqrt{-3+\frac{3\sqrt{7}}{2}}$B.$\sqrt{3+\frac{3\sqrt{7}}{2}}$C.$\sqrt{7}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,橢圓E的左右頂點(diǎn)分別為A、B,左右焦點(diǎn)分別為F1、F2,$|{AB}|=4,|{{F_1}{F_2}}|=2\sqrt{3}$,
(1)求橢圓E的標(biāo)準(zhǔn)方程;
(2)直線y=kx+m(k>0)交橢圓于C、D兩點(diǎn),與線段F1F2及橢圓短軸分別交于M、N兩點(diǎn)(M、N不重合),且|CN|=|DM|.求k的值;
(3)在(2)的條件下,若m>0,設(shè)直線AD、BC的斜率分別為k1、k2,求$\frac{{{k_1}^2}}{{{k_2}^2}}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若a2+b2=4,則直線ax+by+2=0被圓x2+y2=5所截得的弦長為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.函數(shù)y=log${\;}_{\frac{1}{2}}$(3x-a)的定義域是($\frac{2}{3}$,+∞),則a=2.

查看答案和解析>>

同步練習(xí)冊答案