設(shè)O為坐標(biāo)原點(diǎn),F(xiàn)1,F(xiàn)2是橢圓數(shù)學(xué)公式(a>b>0)的焦點(diǎn),若在橢圓上存在點(diǎn)P,滿(mǎn)足∠F1PF2=60°,|OP|=數(shù)學(xué)公式,則該橢圓的離心率為


  1. A.
    數(shù)學(xué)公式
  2. B.
    數(shù)學(xué)公式
  3. C.
    數(shù)學(xué)公式
  4. D.
    數(shù)學(xué)公式
A
分析:要求橢圓的離心率,即要求a,c的關(guān)系,首先由定義和余弦定理得到一個(gè)關(guān)系,再由中線長(zhǎng)公式得到一個(gè)關(guān)系,聯(lián)立可得.
解答:設(shè)|PF1|=x,|PF2|=y,則x+y=2a;①
由余弦定理 cos∠F1PF2=?=
∴x2+y2-xy=4c2;②
∵中線長(zhǎng)公式=+
故OP2=(PF12+PF22+2
?=(x2+y2+2xycos∠F1PF2)?x2+y2=3a2-xy;③
∴①②③聯(lián)立代換掉x,y得:a2=4c2
=
故選:A.
點(diǎn)評(píng):本題主要考查橢圓的定義,余弦定理及中線長(zhǎng)公式,體現(xiàn)了在解題中要靈活運(yùn)用轉(zhuǎn)化知識(shí).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)O為坐標(biāo)原點(diǎn),F(xiàn)1,F(xiàn)2是雙曲線
x2
a2
-
y2
b2
=1
(a>0,b>0)的焦點(diǎn),若在雙曲線上存在點(diǎn)P,滿(mǎn)足F1PF2=60°,|OP|=
10
a
,則該雙曲線的漸近線方程為(  )
A、
3
y=0
B、
3
x±y=0
C、
2
y=0
D、
2
x±y=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)O為坐標(biāo)原點(diǎn),F(xiàn)1,F(xiàn)2是橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦點(diǎn),若在橢圓上存在點(diǎn)P滿(mǎn)足F1PF2=
π
3
,且|OP|=
3
2
a
,則該橢圓的離心率為
1
2
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)O為坐標(biāo)原點(diǎn),F(xiàn)1,F(xiàn)2是橢圓
x2
a2
+
y2
b2
=1
(a>b>0)的焦點(diǎn),若在橢圓上存在點(diǎn)P,滿(mǎn)足∠F1PF2=60°,|OP|=
3
2
a
,則該橢圓的離心率為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)O為坐標(biāo)原點(diǎn),F(xiàn)1,F(xiàn)2是雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的焦點(diǎn),若在雙曲線上存在點(diǎn)P,滿(mǎn)足∠F1PF2=60°,|OP|=
7
2
a,則該雙曲線的離心率為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)O為坐標(biāo)原點(diǎn),F(xiàn)1,F(xiàn)2是雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的焦點(diǎn),若在雙曲線上存在點(diǎn)P,滿(mǎn)足∠F1PF2=30°,|OP|=
7
a,則該雙曲線的漸近線方程為?

查看答案和解析>>

同步練習(xí)冊(cè)答案