【題目】如果數(shù)列對于任意,都有,其中為常數(shù),則稱數(shù)列是“間等差數(shù)列”,為“間公差”.若數(shù)列滿足,,.

(1)求證:數(shù)列是“間等差數(shù)列”,并求間公差

(2)設為數(shù)列的前n項和,若的最小值為-153,求實數(shù)的取值范圍;

(3)類似地:非零數(shù)列對于任意,都有,其中為常數(shù),則稱數(shù)列是“間等比數(shù)列”,為“間公比”.已知數(shù)列中,滿足,,,試問數(shù)列是否為“間等比數(shù)列”,若是,求最大的整數(shù)使得對于任意,都有;若不是,說明理由.

【答案】(1)見解析;(2);(3)63.

【解析】

(1)直接利用定義求出數(shù)列為間等差數(shù)列.

(2)利用分類討論思想,利用數(shù)列的前n項和公式求出數(shù)列的和,進一步利用不等量關系求出結果.

(3)利用分類討論思想,進一步求出數(shù)列的通項公式,再利用函數(shù)的單調性求出k的最大值.

(1)若數(shù)列{an}滿足an+an+1=2n﹣35,n∈N*,則:an+1+an+2=2(n+1)﹣35,

兩式相減得:an+2﹣an=2.故數(shù)列{an}是“間等差數(shù)列”,公差d=2.

(2)(i)當n=2k時,

(a1+a2)+(a3+a4)+…+(an﹣1+an)=﹣33﹣29+…+(2n﹣37)=

易知:當n=18時,最小值S18=﹣153.

(ii)當n=2k+1時,

Sn=a1+(a2+a3)+(a4+a5)+…+(an﹣1+an)=a1+(﹣31)+(﹣29)+…+(2n﹣37)=

當n=17時最小,其最小值為S17=a﹣136,要使其最小值為﹣153,

則:a﹣136≥﹣153,解得:a≥﹣17.

(3)易知:cncn+1=2018(n﹣1,則:cn+1cn+2=2018(n,

兩式相除得:,故數(shù)列{cn}為“間等比數(shù)列”,其間等比為

易求出數(shù)列的通項公式為:,

由于nn+1,則數(shù)列{n}單調遞減.那么,奇數(shù)項和偶數(shù)項都為單調遞減,所以:k>0.

要使數(shù)列為單調遞減數(shù)列.只需2m﹣12m2m+1

即:,

解得,即最大的整數(shù).

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某景區(qū)欲建兩條圓形觀景步道(寬度忽略不計),如圖所示,已知,(單位:米),要求圓M分別相切于點B,D,圓分別相切于點C,D

(1)若,求圓的半徑;(結果精確到0.1米)

(2)若觀景步道的造價分別為每米0.8千元與每米0.9千元,則當多大時,總造價最低?最低總造價是多少?(結果分別精確到0.1°和0.1千元)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,三棱錐PABC中,PC⊥平面ABC,PCAC=2,ABBC,DPB上一點,且CD⊥平面PAB

(1)求證:AB⊥平面PCB;

(2)求二面角CPAB的大小的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)若滿足上奇函數(shù)且上偶函數(shù),求的值;

(2)若函數(shù)滿足恒成立,函數(shù),求證:函數(shù)是周期函數(shù),并寫出的一個正周期;

(3)對于函數(shù),若恒成立,則稱函數(shù)是“廣義周期函數(shù)”, 是其一個廣義周期,若二次函數(shù)的廣義周期為不恒成立),試利用廣義周期函數(shù)定義證明:對任意的,成立的充要條件是.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】1是某斜拉式大橋圖片,為了了解橋的一些結構情況,學校數(shù)學興趣小組將大橋的結構進行了簡化,取其部分可抽象成圖2所示的模型,其中橋塔、與橋面垂直,通過測量得知,,當中點時,.

1)求的長;

2)試問在線段的何處時,達到最大.

1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】《上海市生活垃圾管理條例》于201971日正式實施,某小區(qū)全面實施垃圾分類處理,已知該小區(qū)每月垃圾分類處理量不超過300噸,每月垃圾分類處理成本(元)與每月分類處理量(噸)之間的函數(shù)關系式可近似表示為,而分類處理一噸垃圾小區(qū)也可以獲得300元的收益.

1)該小區(qū)每月分類處理多少噸垃圾,才能使得每噸垃圾分類處理的平均成本最低;

2)要保證該小區(qū)每月的垃圾分類處理不虧損,每月的垃圾分類處理量應控制在什么范圍?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】記無窮數(shù)列的前項中最大值為,最小值為,令

(Ⅰ)若,請寫出的值;

(Ⅱ)求證:“數(shù)列是等差數(shù)列”是“數(shù)列是等差數(shù)列”的充要條件;

(Ⅲ)若 ,求證:存在,使得,有

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)求函數(shù)的單調區(qū)間;

2)求函數(shù)的零點個數(shù);

3)當時,求證不等式解集為空集.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)討論極值點的個數(shù);

(2)若的一個極值點,且,證明: .

查看答案和解析>>

同步練習冊答案