設(shè)A(-2,
3
),橢圓3x2+4y2=48的右焦點(diǎn)是F,點(diǎn)P在橢圓上移動(dòng),當(dāng)|AP|+2|PF|取最小值時(shí)P點(diǎn)的坐標(biāo)是( �。�
A、(0,2
3
B、(0,-2
3
C、(2
3
3
D、(-2
3
3
考點(diǎn):橢圓的簡(jiǎn)單性質(zhì)
專題:計(jì)算題,圓錐曲線的定義、性質(zhì)與方程
分析:由題意可得|AP|+2|PF|=|AP|+
1
e
|PF|,進(jìn)而根據(jù)橢圓的第二定義可得:過(guò)A作右準(zhǔn)線的垂線,交與B點(diǎn),則|AP|+2|PF|的最小值為|AB|,即可得到答案.
解答: 解:由題意可得:e=
1
2

所以|AP|+2|PF|=|AP|+
1
e
|PF|,
∴根據(jù)橢圓的第二定義:過(guò)A作右準(zhǔn)線的垂線,交與B點(diǎn),則|AP|+2|PF|的最小值為|AB|,
∵A(-2,
3
),
∴P的縱坐標(biāo)為
3
,
此時(shí)P的橫坐標(biāo)為2
3

∴P(2
3
,
3
).
故選:C.
點(diǎn)評(píng):本題主要考查了橢圓的應(yīng)用,求解時(shí)要充分利用橢圓的定義可使得解答簡(jiǎn)潔.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

把數(shù)列{
1
n2+n
}依次按第一個(gè)括號(hào)一個(gè)數(shù),第二個(gè)括號(hào)兩個(gè)數(shù),第三個(gè)括號(hào)三個(gè)數(shù),第四個(gè)括號(hào)四個(gè)數(shù),…按此規(guī)律下去,即(
1
2
),(
1
6
,
1
12
),(
1
20
,
1
30
,
1
42
),(
1
56
,
1
72
,
1
90
1
110
),則第6個(gè)括號(hào)內(nèi)各數(shù)字之和為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)
AB
=
a
,
AD
=
b
,
BC
=
c
,則
DC
等于( �。�
A、
a
-
b
+
c
B、
b
-(
a
+
c
C、
a
+
b
+
c
D、
b
-(
a
-
c

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)集合U={1,2,3,4,5},A={1,3,5},B={2,3,5},則A∪B=( �。�
A、UB、∅
C、{3,5}D、{1,2,3,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖在直三棱柱ABC-A1B1C1中,∠ACB=90°,AA1=2,AC=BC=1 則異面直線A1B與AC所成角的余弦值是( �。�
A、
6
3
B、
2
2
C、
3
3
D、
6
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=(2x-3)ex的單調(diào)遞增區(qū)間是( �。�
A、(-∞,
1
2
B、(2,+∞)
C、(0,
1
2
D、(
1
2
,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知F1,F(xiàn)2分別是雙曲線C:
x2
a2
-
y2
b2
=1的左、右兩個(gè)焦點(diǎn).若C上存在一點(diǎn)P,使得|
PF1
|•|
PF2
|=2a2,則C的離心率e的取值范圍是(  )
A、(1,
2
]
B、[
2
,+∞)
C、(1,
3
]
D、[
3
,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在四邊形ABCD中,已知AB=9,BC=6,
CP
=2
PD

(1)若四邊形ABCD是矩形,求
AP
BP
的值;
(2)若四邊形ABCD是平行四邊形,且
AP
BP
=6,求
AB
AD
夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}中,a1=2,對(duì)?n∈N*總有an+1=3an+2成立,
(1)計(jì)算a2,a3,a4的值;
(2)根據(jù)(1)的結(jié)果猜想數(shù)列的通項(xiàng)an,并用數(shù)學(xué)歸納法證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案
鍏� 闂�