某學(xué)生解選擇題出錯的概率為,該生解三道選擇題至少有一道出錯的概率是(   )
A.B.
C.D.
C

試題分析:首先考慮所求事件的對立事件:三道題全對的概率,所以至少一道題目出錯的概率為
點(diǎn)評:當(dāng)直接求解所求的概率需要分多個互斥事件時,常轉(zhuǎn)化為先求其對立事件的概率,兩者間概率和為1
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在某校高三學(xué)生的數(shù)學(xué)校本課程選課過程中,規(guī)定每位同學(xué)只能選一個科目.已知某班第一小組與第二小組各有六位同學(xué)選擇科目甲或科目乙,情況如下表:
 
科目甲
科目乙
總計(jì)
第一小組
1
5
6
第二小組
2
4
6
總計(jì)
3
9
12
現(xiàn)從第一小組、第二小組中各任選2人分析選課情況.
(1)求選出的4人均選科目乙的概率;
(2)設(shè)為選出的4個人中選科目甲的人數(shù),求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某項(xiàng)選拔共有四輪考核,每輪設(shè)有一個問題,能正確回答問題者進(jìn)入下一輪考核,否則
即被淘汰.已知某選手能正確回答第一、二、三、四輪的問題的概率分別為、、,且各輪問題能否正確回答互不影響.
(Ⅰ)求該選手進(jìn)入第四輪才被淘汰的概率;
(Ⅱ)求該選手至多進(jìn)入第三輪考核的概率.
(注:本小題結(jié)果可用分?jǐn)?shù)表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

投擲兩個骰子,至少有一個4點(diǎn)或5點(diǎn)出現(xiàn)時,就說這次試驗(yàn)成功,則在10次試驗(yàn)中,成功次數(shù)X的期望是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知盒中有10個燈泡,其中8個正品,2個次品。需要從中取出2個正品,每次取出1個,取出后不放回,直到取出2個正品為止。設(shè)ξ為取出的次數(shù),求P(ξ=4)=
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某射手擊中目標(biāo)的概率為0.8,每次射擊的結(jié)果相互獨(dú)立,現(xiàn)射擊10次,問他最有可能射中幾次?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

2011年4月28日世界園藝博覽會將在陜西西安浐灞生態(tài)區(qū)舉行,為了接待來自國內(nèi)外的各界人士,需招募一批志愿者,要求志愿者不僅要有一定的氣質(zhì),還需有豐富的人文、地理、歷史等文化知識。志愿者的選拔分面試和知識問答兩場,先是面試,面試通過后每人積60分,然后進(jìn)入知識問答。知識問答有A,B,C,D四個題目,答題者必須按A,B,C,D順序依次進(jìn)行,答對A,B,C,D四題分別得20分、20分、40分、60分,每答錯一道題扣20分,總得分在面試60分的基礎(chǔ)上加或減。答題時每人總分達(dá)到100分或100分以上,直接錄用不再繼續(xù)答題;當(dāng)四道題答完總分不足100分時不予錄用。
假設(shè)志愿者甲面試已通過且第二輪對A,B,C,D四個題回答正確的概率依次是,且各題回答正確與否相互之間沒有影響.
(Ⅰ) 用X表示志愿者甲在知識問答結(jié)束時答題的個數(shù),求X的分布列和數(shù)學(xué)期望;
(Ⅱ)求志愿者甲能被錄用的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(12分)一射擊測試每人射擊二次,甲每擊中目標(biāo)一次記10分,沒有擊中記0分,每次擊中目標(biāo)的概率為;乙每擊中目標(biāo)一次記20分,沒有擊中記0分,每次擊中目標(biāo)的概率為.
(Ⅰ)求甲得10分的概率;
(Ⅱ)求甲乙兩人得分相同的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

“低碳經(jīng)濟(jì)”是促進(jìn)社會可持續(xù)發(fā)展的推進(jìn)器.某企業(yè)現(xiàn)有100萬元資金可用于投資,如果投資“傳統(tǒng)型”經(jīng)濟(jì)項(xiàng)目,一年后可能獲利20%,可能損失10%,也可能不賠不賺,這三種情況發(fā)生的概率分別為;如果投資“低碳型”經(jīng)濟(jì)項(xiàng)目,一年后可能獲利30%,也
可能損失20%,這兩種情況發(fā)生的概率分別為a和n (其中a + b =1 )如果把100萬元投資“傳統(tǒng)型”經(jīng)濟(jì)項(xiàng)目,用表示投資收益(投資收益=回收資金一投資資金),求的概率分布及均值(數(shù)學(xué)期望);(II)如果把100萬元投資“低碳型”經(jīng)濟(jì)項(xiàng)目,預(yù)測其投資收益均值會不低于投資“傳統(tǒng)型”經(jīng)濟(jì)項(xiàng)目的投資收益均值,求a的取值范圍

查看答案和解析>>

同步練習(xí)冊答案