如果函數(shù)y=f(x)的圖象在點(diǎn)P(1,0)處的切線(xiàn)方程是y=-x+1,則f′(1)=
 
考點(diǎn):利用導(dǎo)數(shù)研究曲線(xiàn)上某點(diǎn)切線(xiàn)方程
專(zhuān)題:計(jì)算題,導(dǎo)數(shù)的概念及應(yīng)用
分析:根據(jù)在點(diǎn)P處的斜率就是在該點(diǎn)處的導(dǎo)數(shù),問(wèn)題得解.
解答: 解:在點(diǎn)P處的斜率就是在該點(diǎn)處的導(dǎo)數(shù),
∴f′(1)=-1,
故答案為:-1.
點(diǎn)評(píng):本題考查了導(dǎo)數(shù)的幾何意義,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=log2
1+x
1-x

(Ⅰ)求f(x)的定義域;
(Ⅱ)判斷f(x)的奇偶性并證明;
(Ⅲ)求使f(x)>0成立的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

圓心為(-1,1),半徑為2的圓的方程是(  )
A、(x-1)2+(y+1)2=2
B、(x+1)2+(y-1)2=2
C、(x-1)2+(y+1)2=4
D、(x+1)2+(y-1)2=4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x),g(x)分別是R上的奇函數(shù)、偶函數(shù),且滿(mǎn)足f(x)-g(x)=x-1,則有(  )
A、f(2)<f(3)<g(0)
B、g(0)<f(3)<f(2)
C、f(2)<g(0)<f(3)
D、g(0)<f(2)<f(3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a,b,c分別為△ABC角A、B、C所對(duì)的邊,若滿(mǎn)足a2+b2+ab=c2,則角C大小為( 。
A、30°B、60°
C、90°D、120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ex-kx2(e為自然對(duì)數(shù)的底數(shù)),x∈R.
(1)若k=
1
2
,求證:當(dāng)x∈(0,+∞)時(shí),f(x)>1;
(2)若f(x)在區(qū)間(0,+∞)上單調(diào)遞增,試求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

根據(jù)如圖算法語(yǔ)句,當(dāng)輸出y的值為31時(shí),輸入的x值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC的頂點(diǎn)A(3,4),B(6,0),且∠A的內(nèi)角平分線(xiàn)AT所在的直線(xiàn)方程為7x-y-17=0,求邊AC所在的直線(xiàn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列命題中,真命題為( 。
A、終邊在y軸上的角的集合是{a|a=
2
,k∈Z}
B、在同一直角坐標(biāo)系中,函數(shù)y=sinx的圖象和函數(shù)y=x的圖象有三個(gè)公共點(diǎn)
C、把函數(shù)y=sin(2x+
π
3
)
的圖象向右平移
π
6
個(gè)單位得到y(tǒng)=sin2x的圖象
D、函數(shù)y=sin(x-
π
2
)
在[0,π]上是減函數(shù)

查看答案和解析>>

同步練習(xí)冊(cè)答案