點P(x,y)在不等式組 數(shù)學公式表示的平面區(qū)域內(nèi),若點P(x,y)到直線y=kx-1的最大距離為數(shù)學公式,則k=________.

±1
分析:作出題中不等式組對應的平面區(qū)域,得到△ABC及其內(nèi)部,而直線y=kx-1經(jīng)過定點(0,-1)是△ABC下方的一點,由此觀察圖形得到平面區(qū)域內(nèi)的點B(0,3)到直線y=kx-1的距離最大.最后根據(jù)點到直線距離公式建立關于k的方程,解之即可得到實數(shù)k的值.
解答:解:作出不等式組 表示的平面區(qū)域,
得到如圖所示的△ABC及其內(nèi)部,其中A(0,1),B(0,3),C(1,2)
∵直線y=kx-1經(jīng)過定點(0,-1),
∴△ABC必定在直線y=kx-1的上方時,
由此結(jié)合圖形加以觀察,得到平面區(qū)域內(nèi)的點B(0,3)到直線y=kx-1的距離最大,
將直線y=kx-1化成一般式,得kx-y-1=0
因此,可得=2,解之即可得到k=±1
故答案為:±1
點評:本題給出平面區(qū)域內(nèi)點到直線y=kx-1的距離最大值為2,求實數(shù)k的值,著重考查了點到直線的距離公式和簡單線性規(guī)劃等知識,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=(x2+bx+c)ex在點P(0,f(0))處的切線方程為2x+y-1=0.
(1)求b,c的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間;
(3)若方程f(x)=m恰有兩個不等的實根,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=(x2+bx+c)ex在點P(0,f(0))處的切線方程為2x+y-1=0.
(1)求b,c的值;
(2)若方程f(x)=m恰有兩個不等的實根,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:陜西省模擬題 題型:解答題

已知函數(shù)f(x)=(x2+bx+c)ex在點P(0,f(0))處的切線方程為2x+y-1=0,
(Ⅰ)求b,c的值;
(Ⅱ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅲ)若方程f(x)=m恰有兩個不等的實根,求m的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年陜西省榆林市神木中學高三(上)數(shù)學寒假作業(yè)1(理科)(解析版) 題型:解答題

已知函數(shù)f(x)=(x2+bx+c)ex在點P(0,f(0))處的切線方程為2x+y-1=0.
(1)求b,c的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間;
(3)若方程f(x)=m恰有兩個不等的實根,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2012年陜西省西安市西工大附中高考數(shù)學四模試卷(理科)(解析版) 題型:解答題

已知函數(shù)f(x)=(x2+bx+c)ex在點P(0,f(0))處的切線方程為2x+y-1=0.
(1)求b,c的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間;
(3)若方程f(x)=m恰有兩個不等的實根,求m的取值范圍.

查看答案和解析>>

同步練習冊答案