【題目】已知函數(shù)在區(qū)間上的最大值為9,最小值為1,記

1)求實(shí)數(shù)的值;

2)若不等式成立,求實(shí)數(shù)的取值范圍;

3)定義在上的函數(shù),設(shè),其中將區(qū)間任意劃分成個(gè)小區(qū)間,如果存在一個(gè)常數(shù),使得和式恒成立,則稱函數(shù)為在上的有界變差函數(shù),試判斷函數(shù)是否為在上的有界變差函數(shù)?若是,求的最小值;若不是,請說明理由.

【答案】1;(3;(3)是,.

【解析】

1)根據(jù)上的單調(diào)性可得的最大值和最小值,結(jié)合已知條件可求的值.

2)不等式等價(jià)于,由后者可以得到,從而可求的取值范圍.

3)對任意的上的劃分,必定存在,使得,從而可得,故可得的最大值,從而可判斷上的有界變差函數(shù)且.

(1)因?yàn)?/span>的對稱軸為直線,

為增函數(shù),所以

,解得,又,解得.

所以.

2)由(1)得,

因?yàn)?/span>,所以等價(jià)于,

所以,故,解得.

3)當(dāng)時(shí),,此時(shí)

為減函數(shù),在為增函數(shù).

設(shè)將區(qū)間任意劃分成個(gè)小區(qū)間,

,則存在

使得,

所以

整理得到,

因?yàn)?/span>,,

,當(dāng)且僅當(dāng)時(shí)等號成立,

上的有界變差函數(shù),又,所以.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某基地蔬菜大棚采用水培、無土栽培方式種植各類蔬菜過去50周的資料顯示,該地周光照量(小時(shí))都在30小時(shí)以上,其中不足50小時(shí)的周數(shù)有5周,不低于50小時(shí)且不超過70小時(shí)的周數(shù)有35周,超過70小時(shí)的周數(shù)有10周.根據(jù)統(tǒng)計(jì),該基地的西紅柿增加量(百斤)與使用某種液體肥料(千克)之間對應(yīng)數(shù)據(jù)為如圖所示的折線圖

(1)依據(jù)數(shù)據(jù)的折線圖,是否可用線性回歸模型擬合的關(guān)系?請計(jì)算相關(guān)系數(shù)并加以說明(精確到0.01).(,則線性相關(guān)程度很高,可用線性回歸模型擬合)

(2)蔬菜大棚對光照要求較大,某光照控制儀商家為該基地提供了部分光照控制儀,但每周光照控制儀最多可運(yùn)行臺(tái)數(shù)受周光照量限制,并有如下關(guān)系:

周光照量(單位:小時(shí))

光照控制儀最多可運(yùn)行臺(tái)數(shù)

3

2

1

若某臺(tái)光照控制儀運(yùn)行,則該臺(tái)光照控制儀周利潤為3000元;若某臺(tái)光照控制儀未運(yùn)行,則該臺(tái)光照控制儀周虧損1000元若商家安裝了3臺(tái)光照控制儀,求商家在過去50周周總利潤的平均值.

附:相關(guān)系數(shù)公式,參考數(shù)據(jù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱中,側(cè)面,已知,,點(diǎn)E是棱的中點(diǎn).

1)求證:平面ABC

2)在棱CA上是否存在一點(diǎn)M,使得EM與平面所成角的正弦值為,若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知?jiǎng)又本軸交于點(diǎn),過點(diǎn)作直線,交軸于點(diǎn),點(diǎn)滿足,的軌跡為.

1)求的方程;

2)已知點(diǎn),點(diǎn),過作斜率為的直線交兩點(diǎn),延長,分別交,兩點(diǎn),記直線的斜率為,求證:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為,直線l與曲線C交于不同的兩點(diǎn)A,B.

1)求曲線C的參數(shù)方程;

2)若點(diǎn)P為直線與x軸的交點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知?jiǎng)狱c(diǎn)到定直線的距離比到定點(diǎn)的距離大2.

(1)求動(dòng)點(diǎn)的軌跡的方程;

(2)在軸正半軸上,是否存在某個(gè)確定的點(diǎn),過該點(diǎn)的動(dòng)直線與曲線交于,兩點(diǎn),使得為定值.如果存在,求出點(diǎn)坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

1)當(dāng)為自然對數(shù)的底數(shù))時(shí),求的最小值;

2)討論函數(shù)零點(diǎn)的個(gè)數(shù);

3)若對任意恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,對于⊙Ox2+y21來說,P是坐標(biāo)系內(nèi)任意一點(diǎn),點(diǎn)P到⊙O的距離SP的定義如下:若PO重合,SPr;若P不與O重合,射線OP與⊙O的交點(diǎn)為A,SPAP的長度(如圖).

1)直線2x+2y+10在圓內(nèi)部分的點(diǎn)到⊙O的最長距離為_____

2)若線段MN上存在點(diǎn)T,使得:

①點(diǎn)T在⊙O內(nèi);

點(diǎn)P∈線段MN,都有STSP成立.則線段MN的最大長度為_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以下四個(gè)結(jié)論,正確的是(

①質(zhì)檢員從勻速傳遞的產(chǎn)品生產(chǎn)流水線上,每間隔15分鐘抽取一件產(chǎn)品進(jìn)行某項(xiàng)指標(biāo)檢測,這樣的抽樣是分層抽樣;

②在回歸直線方程中,當(dāng)變量每增加一個(gè)單位時(shí),變量增加0.13個(gè)單位;

③在頻率分布直方圖中,所有小矩形的面積之和是1;

④對于兩個(gè)分類變量,求出其統(tǒng)計(jì)量的觀測值,觀測值越大,我們認(rèn)為有關(guān)系的把握程度就越大.

A.②④B.②③C.①③D.③④

查看答案和解析>>

同步練習(xí)冊答案