設(shè)數(shù)列{}的前n項(xiàng)和為,且(3-mm+3(nN*).其中m為常數(shù),且m≠-3.

(1)求證{}是等比數(shù)列;

(2)若數(shù)列{}的公比qfm),數(shù)列{}滿足,nN,n≥2),求證為等差數(shù)列,并求

答案:
解析:

解:(1)由,

兩式相減得,,

∴  ,  ∴  是等比數(shù)列

。2),,∴  時(shí),

  

  ∴  是以1為首項(xiàng)為公差的等差數(shù)列  ∴ 

∴ 


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,已知a1=a2=1,bn=nSn+(n+2)an,數(shù)列{bn}是公差為d的等差數(shù)列,n∈N*
(1)求d的值;
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)求證:(a1a2an)•(S1S2Sn)<
22n+1(n+1)(n+2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,且滿足Sn=2-an,n=1,2,3,….
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足b1=1,且bn+1=bn+an,求數(shù)列{bn}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和sn=n2+n,(n∈N+),數(shù)列{bn}滿足bn+1=2bn-1,(n∈N+)且b1=5
(1)求數(shù)列{an}{bn}的通項(xiàng)公式.
(2)設(shè)數(shù)列{cn}的前n項(xiàng)和Tn,且cn=
1
anlog2(bn-1)
,證明:Tn
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•重慶)設(shè)數(shù)列{an}的前n項(xiàng)和Sn滿足Sn+1=a2Sn+a1,其中a2≠0.
(I)求證:{an}是首項(xiàng)為1的等比數(shù)列;
(II)若a2>-1,求證Sn=
n2
(a1+an)
,并給出等號(hào)成立的充要條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線x2=4y,過原點(diǎn)作斜率1的直線交拋物線于第一象限內(nèi)一點(diǎn)P1,又過點(diǎn)P1作斜率為
1
2
的直線交拋物線于點(diǎn)P2,再過P2作斜率為
1
4
的直線交拋物線于點(diǎn)P3,…,如此繼續(xù),一般地,過點(diǎn)Pn作斜率為
1
2n
的直線交拋物線于點(diǎn)Pn+1,設(shè)點(diǎn)Pn(xn,yn).
(Ⅰ)令bn=x2n+1-x2n-1,求證:數(shù)列{bn}是等比數(shù)列.
(Ⅱ)設(shè)數(shù)列{bn}的前n項(xiàng)和為Sn,試比較
3
4
Sn+1
1
3n+10
的大小.

查看答案和解析>>

同步練習(xí)冊答案