與圓C1:x2+(y+1)2=1及圓C2:x2+(y-4)2=4都外切的動(dòng)圓的圓心在( 。
分析:直接利用已知圓的外切性質(zhì)列出關(guān)系式,結(jié)合圓錐曲線的定義,求出圓心的軌跡,即可得出答案.
解答:解:由已知得C1的圓心坐標(biāo)(0.-1),r1=1,
C2的圓心坐標(biāo)(0,4),r2=2,
設(shè)動(dòng)圓圓心M,半徑r,則|MC1|=r+1,|MC2|=r+2,
∴|MC2|-|MC1|=1,
由雙曲線的定義可得:動(dòng)圓的圓心在雙曲線的一支上.
故選C.
點(diǎn)評(píng):本題是中檔題,考查曲線軌跡方程的求法,圓的幾何性質(zhì)的應(yīng)用,考查計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

圓C1:x2+y2-4x+6y=0與圓C2:x2+y2-6x=0的交點(diǎn)為A,B,則AB的垂直平分線的方程為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線C1:x2-y2=m(m>0)與橢圓C2
x2
a2
+
y2
b2
=1
有公共焦點(diǎn)F1F2,點(diǎn)N(
2
,1)
是它們的一個(gè)公共點(diǎn).
(1)求C1,C2的方程;
(2)過點(diǎn)F2且互相垂直的直線l1,l2與圓M:x2+(y+1)2=4分別相交于點(diǎn)A,B和C,D,求|AB|+|CD|的最大值,并求此時(shí)直線l1的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:學(xué)習(xí)周報(bào) 數(shù)學(xué) 人教課標(biāo)高一版(A必修2) 2009-2010學(xué)年 第25期 總181期 人教課標(biāo)高一版 題型:044

已知直線l與圓C1:x2+y2=2相切于點(diǎn)(1,1),圓C2的圓心在射線2x-y=0(x≥0)上,圓C2過原點(diǎn),且被直線l截得的弦長(zhǎng)為4

(1)求直線l的方程;

(2)求圓C2的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年高考數(shù)學(xué)熱點(diǎn)題型4:解析幾何(解析版) 題型:解答題

已知雙曲線C1:x2-y2=m(m>0)與橢圓有公共焦點(diǎn)F1F2,點(diǎn)是它們的一個(gè)公共點(diǎn).
(1)求C1,C2的方程;
(2)過點(diǎn)F2且互相垂直的直線l1,l2與圓M:x2+(y+1)2=4分別相交于點(diǎn)A,B和C,D,求|AB|+|CD|的最大值,并求此時(shí)直線l1的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案