如圖,AB為圓O的直徑,點(diǎn)E、F在圓O上,且AB∥EF,矩形ABCD所在的平面和圓O所在的平面互相垂直,且AB=2,AD=EF=1.
(1)求證:AF⊥平面CBF.
(2)設(shè)FC的中點(diǎn)為M,求證:OM∥平面DAF.
(3)求四棱錐F-ABCD的體積.
【答案】分析:(Ⅰ)欲證AF⊥平面CBF,根據(jù)直線與平面垂直的判定定理可知只需證AF與平面CBF內(nèi)兩相交直線垂直,根據(jù)面面垂直的性質(zhì)可知CB⊥平面ABEF,而AF?平面ABEF,則AF⊥CB,而AF⊥BF,滿足定理所需條件;
(Ⅱ)欲證OM∥平面DAF,根據(jù)直線與平面平行的判定定理可知只需證OM與平面DAF內(nèi)一直線平行即可,設(shè)DF的中點(diǎn)為N,則MNAO為平行四邊形,則OM∥AN,又AN?平面DAF,OM不屬于平面DAF,滿足定理所需條件;
(Ⅲ)過(guò)點(diǎn)F作FG⊥AB于G,根據(jù)面面垂直的性質(zhì)可知FG⊥平面ABCD,F(xiàn)G即正△OEF的高,然后根據(jù)三棱錐的體積公式進(jìn)行求解即可.
解答:解:(Ⅰ)證明:∵平面ABCD⊥平面ABEF,CB⊥AB,
平面ABCD∩平面ABEF=AB
∴CB⊥平面ABEF∵AF?平面ABEF
∴AF⊥CB
又AB為圓O的直徑∴AF⊥BF
∴AF⊥平面CBF
(Ⅱ)設(shè)DF的中點(diǎn)為N,則MN又AO,
∴MNAO∴MNAO為平行四邊形
∴OM∥AN,
又AN?平面DAF,OM不屬于平面DAF
∴OM∥平面DAF
(Ⅲ)過(guò)點(diǎn)F作FG⊥AB于G∵平面ABCD⊥平面ABEF,
∴FG⊥平面ABCD,F(xiàn)G即正△OEF的高
∴SABCD=2

點(diǎn)評(píng):本題主要考查直線與平面平行的判定,以及直線與平面垂直的判定和三棱錐的體積的計(jì)算,體積的求解在最近兩年高考中頻繁出現(xiàn),值得重視.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

查看答案和解析>>

同步練習(xí)冊(cè)答案