已知拋物線的頂點(diǎn)在原點(diǎn),對(duì)稱軸為坐標(biāo)軸,焦點(diǎn)在直線2x-y-4=0上,求拋物線的標(biāo)準(zhǔn)方程.

 

y2=8x或x2=-16y

【解析】直線2x-y-4=0與x軸的交點(diǎn)是(2,0),與y軸的交點(diǎn)是(0,-4).由于拋物線的頂點(diǎn)在原點(diǎn),對(duì)稱軸為坐標(biāo)軸,則①若拋物線焦點(diǎn)在x軸上,則拋物線的標(biāo)準(zhǔn)方程是y2=8x;②若拋物線焦點(diǎn)在y軸上,則拋物線的標(biāo)準(zhǔn)方程是x2=-16y;故所求拋物線方程為y2=8x或x2=-16y.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第十一章第5課時(shí)練習(xí)卷(解析版) 題型:解答題

為保護(hù)水資源,宣傳節(jié)約用水,某校4名志愿者準(zhǔn)備去附近的甲、乙、丙三家公園進(jìn)行宣傳活動(dòng),每名志愿者都可以從三家公園中隨機(jī)選擇一家,且每人的選擇相互獨(dú)立.

(1)求4人恰好選擇了同一家公園的概率;

(2)設(shè)選擇甲公園的志愿者的人數(shù)為X,試求X的分布列.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第十一章第3課時(shí)練習(xí)卷(解析版) 題型:填空題

已知(1+ax)(1+x)5的展開(kāi)式中x2的系數(shù)為5,則a=________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第九章第9課時(shí)練習(xí)卷(解析版) 題型:解答題

拋物線頂點(diǎn)在原點(diǎn),它的準(zhǔn)線過(guò)雙曲線=1(a>0,b>0)的一個(gè)焦點(diǎn),并與雙曲線實(shí)軸垂直,已知拋物線與雙曲線的一個(gè)交點(diǎn)為,求拋物線與雙曲線方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第九章第9課時(shí)練習(xí)卷(解析版) 題型:填空題

已知雙曲線C1:=1(a>0,b>0)的離心率為2.若拋物線C2:x2=2py(p>0)的焦點(diǎn)到雙曲線C1的漸近線的距離為2,則拋物線C2的方程為_(kāi)_______.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第九章第9課時(shí)練習(xí)卷(解析版) 題型:填空題

拋物線y2=-8x的準(zhǔn)線方程是________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第九章第8課時(shí)練習(xí)卷(解析版) 題型:填空題

已知雙曲線=1(a>0,b>0)與拋物線y2=8x有一個(gè)公共的焦點(diǎn)F,且兩曲線的一個(gè)交點(diǎn)為P,若PF=5,則雙曲線的漸近線方程為_(kāi)_______.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第九章第7課時(shí)練習(xí)卷(解析版) 題型:解答題

已知橢圓=1(a>b>0)的離心率e=,連結(jié)橢圓的四個(gè)頂點(diǎn)得到的菱形的面積為4.

(1)求橢圓的方程;

(2)設(shè)直線l與橢圓相交于不同的兩點(diǎn)A,B.已知點(diǎn)A的坐標(biāo)為(-a,0).若|AB|=,求直線l的傾斜角.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第九章第5課時(shí)練習(xí)卷(解析版) 題型:解答題

已知以點(diǎn)C(t∈R,t≠0)為圓心的圓與x軸交于點(diǎn)O、A,與y軸交于點(diǎn)O、B,其中O為原點(diǎn).

(1)求證:△AOB的面積為定值;

(2)設(shè)直線2x+y-4=0與圓C交于點(diǎn)M、N,若|OM|=|ON|,求圓C的方程;

(3)在(2)的條件下,設(shè)P、Q分別是直線l:x+y+2=0和圓C的動(dòng)點(diǎn),求|PB|+|PQ|的最小值及此時(shí)點(diǎn)P的坐標(biāo).

 

查看答案和解析>>

同步練習(xí)冊(cè)答案