【題目】已知函數(shù)定義在區(qū)間上,,且當(dāng)時(shí),恒有,又?jǐn)?shù)列滿足,,設(shè),對(duì)于任意的的最小自然數(shù)的值為_______________________________.

【答案】5

【解析】

先明確函數(shù)的奇偶性,xan,y=﹣an,可得f an)與f an+1)的關(guān)系,求出即可得到,利用最值建立的不等式關(guān)系,即可得到結(jié)果.

xy0時(shí),則由已知有f0)﹣f0)=f),

可解得f 0)=0

再令x0,y(﹣11),則有f0)﹣fy)=f),即f (﹣y)=﹣f y),

f x)是(﹣1,1)上的奇函數(shù).

xan,y=﹣an,于是fan)﹣f(﹣an)=f),

由已知得2f an)=f an+1),

,

∴數(shù)列{fan}是以fa1)=f)=﹣1為首項(xiàng),2為公比的等比數(shù)列.

fan)═﹣1×2n12n1

,∴

又任意的,

,即

故自然數(shù)的最小值為5.故答案為:5

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),,其中為常數(shù),函數(shù)的圖象在它們與坐標(biāo)軸交點(diǎn)處的切線互相平行.

1)求的值;

2)若存在,使不等式成立,求實(shí)數(shù)的取值范圍;

3)令,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】橢圓的離心率為,且過(guò)點(diǎn).

(1)求橢圓的方程;

(2)設(shè)為橢圓上任一點(diǎn), 為其右焦點(diǎn),點(diǎn)滿足.

①證明: 為定值;

②設(shè)直線與橢圓有兩個(gè)不同的交點(diǎn),與軸交于點(diǎn).若成等差數(shù)列,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)為了了解顧客的購(gòu)物信息,隨機(jī)在商場(chǎng)收集了位顧客購(gòu)物的相關(guān)數(shù)據(jù)如下表:

一次購(gòu)物款(單位:元)

顧客人數(shù)

統(tǒng)計(jì)結(jié)果顯示位顧客中購(gòu)物款不低于元的顧客占,該商場(chǎng)每日大約有名顧客,為了增加商場(chǎng)銷(xiāo)售額度,對(duì)一次購(gòu)物不低于元的顧客發(fā)放紀(jì)念品.

(Ⅰ)試確定, 的值,并估計(jì)每日應(yīng)準(zhǔn)備紀(jì)念品的數(shù)量;

(Ⅱ)為了迎接春節(jié),商場(chǎng)進(jìn)行讓利活動(dòng),一次購(gòu)物款元及以上的一次返利元;一次購(gòu)物不超過(guò)元的按購(gòu)物款的百分比返利,具體見(jiàn)下表:

一次購(gòu)物款(單位:元)

返利百分比

請(qǐng)問(wèn)該商場(chǎng)日均大約讓利多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一個(gè)特定時(shí)段內(nèi),以點(diǎn)E為中心的7n mile以?xún)?nèi)海域被設(shè)為警戒水域.點(diǎn)E正北55n mile處有一個(gè)雷達(dá)觀測(cè)站A,某時(shí)刻測(cè)得一艘勻速直線行駛的船只位于點(diǎn)A北偏東45°且與點(diǎn)A相距40n mile的位置B,經(jīng)過(guò)40分鐘又測(cè)得該船已行駛到點(diǎn)A北偏東(其中,)且與點(diǎn)A相距10n mile的位置C

I)求該船的行駛速度(單位:n mile /h;

II)若該船不改變航行方向繼續(xù)行駛.判斷它是否會(huì)進(jìn)入警戒水域,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列滿足,.

1)若,且,求的通項(xiàng)公式;

2)設(shè)的第項(xiàng)是最大項(xiàng),即,求證:的第項(xiàng)是最大項(xiàng);

3)設(shè),求的取值范圍,使得有最大值與最小值,且.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)判斷函數(shù)在區(qū)間上零點(diǎn)的個(gè)數(shù);

(2)函數(shù)在區(qū)間上的極值點(diǎn)從小到大分別為,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在雙曲線的右支上存在點(diǎn),使得點(diǎn)與雙曲線的左、右焦點(diǎn),形成的三角形的內(nèi)切圓的半徑為,若的重心滿足,則雙曲線的離心率為__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),

(1)若函數(shù)fx)有兩個(gè)零點(diǎn),求實(shí)數(shù)a的取值范圍;

(2)若a=3,且對(duì)任意的x1∈[-1,2],總存在,使gx1)-fx2)=0成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案