已知曲線y=
x2
4
-3lnx
的一條切線的斜率為
1
2
,則切點(diǎn)的橫坐標(biāo)為
 
分析:求出曲線方程的導(dǎo)函數(shù),根據(jù)切線的方程找出切線的斜率,令導(dǎo)函數(shù)等于斜率列出關(guān)于x的方程,求出方程的解即為切點(diǎn)的橫坐標(biāo).
解答:解:求導(dǎo)函數(shù)得:y′=
x
2
-
3
x
(x>0),又由曲線的一條切線的斜率為
1
2
,
x
2
-
3
x
=
1
2
即(x-3)(x+2)=0,解得x=3,x=-2(不合題意,舍去),
則切點(diǎn)的橫坐標(biāo)為3.
故答案為:3
點(diǎn)評(píng):此題考查學(xué)生會(huì)利用導(dǎo)數(shù)求曲線上過(guò)某點(diǎn)切線方程的斜率,是一道基礎(chǔ)題.學(xué)生在求出x的值后,注意隱含的條件函數(shù)的定義域x>0,舍去不合題意的x的值.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列命題中,正確命題的序號(hào)為
 
.①命題p:?x∈R,x2+2x+3<0,則?p:?x∈R,x2+2x+3>0;
②使不等式(2-|x|)(3+x)>0成立的一個(gè)必要不充分條件是x<4;③已知曲線y=
x2
4
-3lnx
的一條切線的斜率為
1
2
的充要條件是切點(diǎn)的橫坐標(biāo)為3;④函數(shù)y=f(x-1)與函數(shù)y=f(1-x)的圖象關(guān)于直線x=1對(duì)稱.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知曲線y=
x2
4
的一條切線的斜率為
1
2
,則切點(diǎn)的橫坐標(biāo)為( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知曲線y=
x2
4
的一條切線的斜率為
1
2
,則切點(diǎn)的橫坐標(biāo)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知曲線y=
x2
4
-3lnx的一條切線的斜率為
1
2
,則切點(diǎn)的橫坐標(biāo)為(  )
A、3
B、2
C、1
D、
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知曲線y=
x2
4
-3lnx的一條切線的斜率為-
1
2
,則切點(diǎn)的橫坐標(biāo)為( 。
A、3
B、2
C、1
D、
1
2

查看答案和解析>>

同步練習(xí)冊(cè)答案