10.求經(jīng)過(guò)點(diǎn)M(-3,2)和N(-5,-2),且圓心在直線2x-y+3=0上的圓的方程.

分析 由M和N的坐標(biāo)求出直線MN的斜率,根據(jù)兩直線垂直斜率的乘積為-1求出直線MN垂直平分線的斜率,根據(jù)垂徑定理得到圓心在弦MN的垂直平分線上,又圓心在已知直線上,聯(lián)立兩直線方程組成方程組,求出方程組的解集,得到圓心C的坐標(biāo),再利用兩點(diǎn)間的距離公式求出|MC|的長(zhǎng),即為圓的半徑,由圓心坐標(biāo)和半徑寫出圓的標(biāo)準(zhǔn)方程即可.

解答 解:∵M(jìn)(-3,2)和N(-5,-2),中點(diǎn)坐標(biāo)(-4,0)
∴直線MN的斜率為$\frac{2+2}{-3+5}$=2,
∴直線MN垂直平分線的斜率為:$-\frac{1}{2}$,其方程為:y=-$\frac{1}{2}$(x+4),即x+2y+4=0
與直線2x-y+3=0聯(lián)立解得:x=-2,y=-1,即所求圓的圓心C坐標(biāo)為(-2,-1),
又所求圓的半徑r=|MC|=$\sqrt{(-3+2)^{2}+(2+1)^{2}}$=$\sqrt{10}$,
則所求圓的方程為(x+2)2+(y+1)2=10.

點(diǎn)評(píng) 本題考查了圓的標(biāo)準(zhǔn)方程,涉及的知識(shí)有:直線斜率的求法,兩直線垂直時(shí)斜率滿足的關(guān)系,兩點(diǎn)間的距離公式,以及兩直線的交點(diǎn)坐標(biāo)求法,其中根據(jù)垂徑定理得出弦AB的垂直平分線過(guò)圓心是解本題的關(guān)鍵,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

查看答案和解析>>

同步練習(xí)冊(cè)答案