【題目】已知集合A={x|x2+x﹣2>0},B={y|y=log2x},則(RA)∩B=(
A.(﹣2,1)
B.[﹣2,1]
C.(﹣∞,﹣2)∪(1,+∞)
D.(﹣2,1]

【答案】B
【解析】解:由A={x|x2+x﹣2>0}={x|x<﹣2或x>1},
所以RA={x|﹣2≤x≤1}=[﹣2,1],
又B={y|y=log2x}=R,
所以(RA)∩B=[﹣2,1],
故選:B.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解交、并、補(bǔ)集的混合運(yùn)算(求集合的并、交、補(bǔ)是集合間的基本運(yùn)算,運(yùn)算結(jié)果仍然還是集合,區(qū)分交集與并集的關(guān)鍵是“且”與“或”,在處理有關(guān)交集與并集的問題時,常常從這兩個字眼出發(fā)去揭示、挖掘題設(shè)條件,結(jié)合Venn圖或數(shù)軸進(jìn)而用集合語言表達(dá),增強(qiáng)數(shù)形結(jié)合的思想方法).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了了解某年級500名學(xué)生某次測試的體育成績,從中抽取了30名學(xué)生的成績進(jìn)行統(tǒng)計分析,在這個問題中“30”是指( 。
A.總體的個數(shù)
B.個體
C.樣本容量
D.從總體中抽取的一個樣本

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a,b,a+b成等差數(shù)列,a,b,ab成等比數(shù)列,且0<logm(ab)<1,則m的取值范圍是(
A.m>1
B.1<m<8
C.m>8
D.0<m<1或m>8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知{an}滿足a1=1,an=2an1+1(n≥2),則an=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)集合A={x∈R|x﹣2>0},B={x∈R|x<0},C={x∈R|x(x﹣2)>0},則“x∈A∪B”是“x∈C”的( 。
A.充分而不必要條件
B.必要而不充分條件
C.充分必要條件
D.即不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知m、n為兩條不同的直線,α、β為兩個不同的平面,則下列命題中正確的是(
A.α⊥β,mαm⊥β
B.α⊥β,mα,nβm⊥n
C.m∥n,n⊥αm⊥α
D.mα,nα,m∥β,n∥βα∥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校在暑假組織社會實踐活動,將8名高一年級學(xué)生,平均分配甲、乙兩家公司,其中兩名英語成績優(yōu)秀學(xué)生不能分給同一個公司;另三名電腦特長學(xué)生也不能分給同一個公司,則不同的分配方案有(
A.36種
B.38種
C.108種
D.114種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)x∈R,則“|x﹣2|<1”是“x2+x﹣2>0”的(  )
A.充分而不必要條件
B.必要而不充分條件
C.充要條件
D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】用數(shù)字0,1,2,3,5組成 個沒有重復(fù)數(shù)字的五位偶數(shù).

查看答案和解析>>

同步練習(xí)冊答案