解:( I)由|f(x)|≤|2x
2+4x-6|=2|(x+3)(x-1)|得f(-3)=0,f(1)=0,
故a=2,b=-3,∴f(x)=x
2+2x-3
(II)由2a
n=f(a
n-1)+3=a
n-12+2a
n-1=a
n-1(a
n-1+2)(n≥2)得
,
∴
∴
=
∵2a
n=a
n-12+2a
n-1(n≥2),∴2a
n-2a
n-1=a
n-12≥0(n≥2),
∴a
n≥a
n-1(n≥2),從而a
n≥a
n-1≥≥a
2≥a
1=3>0,即a
n+1>0,∴
(III)由2a
n=a
n-12+2a
n-1(n≥2)得(a
n-1+1)
2=2a
n+1<2(a
n+1)(n≥2),
設a
n+1=c
n,則c
1=4,且2c
n>c
n-12(n≥2),
于是1+log
2c
n>2log
2c
n-1(n≥2),
設d
n=log
2c
n,則d
1=2,且1+d
n>2d
n-1(n≥2),∴d
n-1>2(d
n-1-1)(n≥2),
∴d
n-1>2
2(d
n-2-1)>>2
n-1(d
1-1)=2
n-1(n≥2),
從而n≥2時,
當n=1時,
,∴
分析:( I)由|f(x)|≤|2x
2+4x-6|=2|(x+3)(x-1)|知a=2,b=-3,由此可知f(x)=x
2+2x-3(2分)
(II)由2a
n=f(a
n-1)+3=a
n-12+2a
n-1=a
n-1(a
n-1+2)(n≥2)知
故
=
由此可知
(III)由2a
n=a
n-12+2a
n-1(n≥2)知(a
n-1+1)
2=2a
n+1<2(a
n+1)(n≥2),設a
n+1=c
n,可求出1+log
2c
n>2log
2c
n-1,設d
n=log
2c
n,可求出d
n-1>2
2(d
n-2-1)>>2
n-1(d
1-1)=2
n-1(n≥2),由此可知
點評:本題考查數(shù)列的綜合運用,難度較大,解題時要認真審題,仔細解答.