【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),直線的參數(shù)方程為為參數(shù)).設(shè)直線的交點(diǎn)為,當(dāng)變化時的點(diǎn)的軌跡為曲線.

1)求出曲線的普通方程;

2)以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,設(shè)射線的極坐標(biāo)方程為,點(diǎn)是射線與曲線的交點(diǎn),求點(diǎn)的極徑.

【答案】1.2

【解析】

1)先將直線,的參數(shù)方程化為普通方程,再根據(jù)交軌法消去參數(shù),即可得到曲線的普通方程;

2)設(shè)出點(diǎn)的直角坐標(biāo)為,再根據(jù)點(diǎn)在射線上以及點(diǎn)在曲線上,即可解出.

1)直線的普通方程為,直線的普通方程為

聯(lián)立直線,方程消去參數(shù),得曲線C的普通方程為,

整理得

2)設(shè)Q點(diǎn)的直角坐標(biāo)系坐標(biāo)為

可得

代入曲線C的方程可得,解得(舍),所以點(diǎn)的極徑為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是國家統(tǒng)計(jì)局于202019日發(fā)布的201812月到201912月全國居民消費(fèi)價格的漲跌幅情況折線圖.(注:同比是指本期與同期作對比;環(huán)比是指本期與上期作對比.如:20192月與20182月相比較稱同比,20192月與20191月相比較稱環(huán)比)根據(jù)該折線圖,下列結(jié)論錯誤的是(

A.201912月份,全國居民消費(fèi)價格環(huán)比持平

B.201812月至201912月全國居民消費(fèi)價格環(huán)比均上漲

C.201812月至201912月全國居民消費(fèi)價格同比均上漲

D.201811月的全國居民消費(fèi)價格高于201712月的全國居民消費(fèi)價格

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正項(xiàng)數(shù)列中,,點(diǎn)在拋物線.數(shù)列中,點(diǎn)在經(jīng)過點(diǎn),以為方向向量的直線.

1)求數(shù)列,的通項(xiàng)公式;

2)若,問是否存在,使得成立?若存在,求出的值;若不存在,說明理由;

3)對任意的正整數(shù),不等式成立,求正數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將邊長為5的菱形ABCD沿對角線AC折起,頂點(diǎn)B移動至處,在以點(diǎn)B'A,C,為頂點(diǎn)的四面體AB'CD中,棱ACB'D的中點(diǎn)分別為E、F,若AC6,且四面體AB'CD的外接球球心落在四面體內(nèi)部,則線段EF長度的取值范圍為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,有一種賽車跑道類似梨形曲線,由圓弧和線段AB,CD四部分組成,在極坐標(biāo)系Ox中,A2,),B1),C1,),D2,),弧所在圓的圓心分別是(00),(20),曲線M1是弧,曲線M2是弧

1)分別寫出M1,M2的極坐標(biāo)方程:

2)點(diǎn)E,F位于曲線M2上,且,求△EOF面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高校藝術(shù)學(xué)院2019級表演專業(yè)有27人,播音主持專業(yè)9人,影視編導(dǎo)專業(yè)18.某電視臺綜藝節(jié)目招募觀眾志愿者,現(xiàn)采用分層抽樣的方法從上述三個專業(yè)的人員中選取6人作為志愿者.

1)分別寫出各專業(yè)選出的志愿者人數(shù);

2)將6名志愿者平均分成三組,且每組的兩名同學(xué)選自不同的專業(yè),通過適當(dāng)?shù)姆绞搅谐鏊锌赡艿慕Y(jié)果,并求表演專業(yè)的志愿者與播音主持專業(yè)的志愿者分在一組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】新型冠狀病毒最近在全國蔓延,具有很強(qiáng)的人與人之間的傳染性,該病毒在進(jìn)入人體后一般有14天的潛伏期,在這14天的潛伏期內(nèi)患者無任何癥狀,為病毒傳播的最佳時間.假設(shè)每位病毒攜帶者在潛伏期內(nèi)每天有位密切接觸者,接觸病毒攜帶者后被感染的概率為,每位密切接觸者不用再接觸其他病毒攜帶者.

1)求一位病毒攜帶者一天內(nèi)感染的人數(shù)的均值;

2)若,時,從被感染的第一天算起,試計(jì)算某一位病毒攜帶者在14天潛伏期內(nèi),被他平均累計(jì)感染的人數(shù)(用數(shù)字作答);

33162018分,由我國軍事科學(xué)院軍事科學(xué)研究院陳薇院士領(lǐng)銜的科學(xué)團(tuán)隊(duì),研制重組新型冠狀病毒疫苗獲批進(jìn)入臨床狀態(tài),新疫苗的使用,可以極大減少感染新型冠狀病毒的人數(shù),為保證安全性和有效性,某科研團(tuán)隊(duì)抽取500支新冠疫苗,觀測其中某項(xiàng)質(zhì)量指標(biāo)值,得到如下頻率分布直方圖:

①求這500支該項(xiàng)質(zhì)量指標(biāo)值的樣本平均值(同一組的數(shù)據(jù)用該組區(qū)代表間的中點(diǎn)值)

②由直方圖可以認(rèn)為,新冠疫苗的該項(xiàng)質(zhì)量指標(biāo)值服從正態(tài)分布,其中近似為樣本平均數(shù),近似為樣本方差,經(jīng)計(jì)算可得這500支新冠疫苗該項(xiàng)指標(biāo)值的樣本方差.現(xiàn)有5名志愿者參與臨床試驗(yàn),觀測得出該項(xiàng)指標(biāo)值分別為:206178,195,160,229,試問新冠疫苗的該項(xiàng)指標(biāo)值是否正常,為什么?

參考數(shù)據(jù):,若,則,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知動圓與軸相切于點(diǎn),過點(diǎn),分別作動圓異于軸的兩切線,設(shè)兩切線相交于,點(diǎn)的軌跡為曲線.

1)求曲線的軌跡方程;

2)過的直線與曲線相交于不同兩點(diǎn),若曲線上存在點(diǎn),使得成立,求實(shí)數(shù)的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)平面中,ABC的兩個頂點(diǎn)AB的坐標(biāo)分別為A(﹣1,0),B 1,0),平面內(nèi)兩點(diǎn)G、M同時滿足下列條件:(1;(2;(3,則ABC的頂點(diǎn)C的軌跡方程為_____

查看答案和解析>>

同步練習(xí)冊答案