如圖,四邊形PCBM是直角梯形,∠PCB=90°,PM∥BC,PM=1,BC=2,又AC=1,∠ACB=120°,AB⊥BC,直線AM與直線PC所成的角為60°.

(Ⅰ)求證:平面PAC⊥平面ABC;

(Ⅱ)求三棱錐P-MAC的體積;

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四邊形PCBM是直角梯形,∠PCB=90°,PM∥BC,PM=1,BC=2.又AC=1,∠ACB=120°,AB⊥PC,直線AM與直線PC所成的角為60°.
(1)求證:PC⊥AC;
(2)求二面角M-AC-B的余弦值;
(3)求點B到平面MAC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四邊形PCBM是直角梯形,∠PCB=90°,PM∥BC,PM=1,BC=2.又AC=1,∠ACB=120°,AB⊥PC,直線AM與直線PC所成的角為60°.
(1)求證:PC⊥AC;
(2)求二面角M-AC-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年河北衡水中學(xué)高三上學(xué)期期中考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

如圖,四邊形PCBM是直角梯形,∠PCB=90°,PM∥BC,PM=1,BC=2.又AC=1,∠ACB=120°,AB⊥PC,直線AM與直線PC所成的角為60°.

(1)求證:PC⊥AC;

(2)求二面角M﹣AC﹣B的余弦值;

(3)求點B到平面MAC的距離.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年重慶市三峽聯(lián)盟高三3月聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,四邊形PCBM是直角梯形,,.又,直線AM與直線PC所成的角為

(1)求證:;

(2)求二面角的余弦值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年江西省南昌三中高考數(shù)學(xué)三模試卷(理科)(解析版) 題型:解答題

如圖,四邊形PCBM是直角梯形,∠PCB=90°,PM∥BC,PM=1,BC=2.又AC=1,∠ACB=120°,AB⊥PC,直線AM與直線PC所成的角為60°.
(1)求證:PC⊥AC;
(2)求二面角M-AC-B的余弦值.

查看答案和解析>>

同步練習(xí)冊答案