【題目】已知函數(shù)fx)=cos),把函數(shù)fx)的圖象向左平移個單位得函數(shù)gx)的圖象,則下面結(jié)論正確的是(

A.函數(shù)gx)是偶函數(shù)

B.函數(shù)gx)的最小正周期是

C.函數(shù)gx)在區(qū)間,3π]上是增區(qū)數(shù)

D.函數(shù)gx)的圖象關(guān)于直線xπ對稱

【答案】C

【解析】

根據(jù)三角函數(shù)的圖象平移關(guān)系,求出gx)的解析式,結(jié)合三角函數(shù)的性質(zhì)分別進行判斷即可.

函數(shù)fx)的圖象向左平移個單位得函數(shù)gx)的圖象,

gx)=cos[x++]cos+),

則函數(shù)gx)不是偶函數(shù),最小周期為T8π,故A,B錯誤,

πx3π時,x+,此時函數(shù)gx)為增函數(shù),故C正確,

xπ時,gπ)=cosπ+)=cos≠±1,即函數(shù)gx)的圖象關(guān)于直線

xπ不對稱,故D錯誤,

故選:C

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)當時,求函數(shù)的單調(diào)區(qū)間;

2)當時,證明: (其中e為自然對數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給出以下四個結(jié)論:

(1)函數(shù)的對稱中心是;

(2)若關(guān)于的方程沒有實數(shù)根,則的取值范圍是

(3)已知點與點在直線兩側(cè),則;

(4)若將函數(shù)的圖象向右平移個單位后變?yōu)榕己瘮?shù),則的最小值是;

其中正確的結(jié)論是:_____________________(把所有正確命題的序號填上).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,我市某居民小區(qū)擬在邊長為1百米的正方形地塊上劃出一個三角形地塊種植草坪,兩個三角形地塊種植花卉,一個三角形地塊設(shè)計成水景噴泉,四周鋪設(shè)小路供居民平時休閑散步,點在邊上,點在邊上,記

1)當時,求花卉種植面積關(guān)于的函數(shù)表達式,并求的最小值;

2)考慮到小區(qū)道路的整體規(guī)劃,要求,請?zhí)骄?/span>是否為定值,若是,求出此定值,若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某汽車美容公司為吸引顧客,推出優(yōu)惠活動:對首次消費的顧客,按/次收費,并注冊成為會員,對會員逐次消費給予相應(yīng)優(yōu)惠,標準如下:

消費次第

收費比率

該公司注冊的會員中沒有消費超過次的,從注冊的會員中,隨機抽取了100位進行統(tǒng)計,得到統(tǒng)計數(shù)據(jù)如下:

消費次數(shù)

人數(shù)

假設(shè)汽車美容一次,公司成本為元,根據(jù)所給數(shù)據(jù),解答下列問題:

1)某會員僅消費兩次,求這兩次消費中,公司獲得的平均利潤;

2)以事件發(fā)生的頻率作為相應(yīng)事件發(fā)生的概率,設(shè)該公司為一位會員服務(wù)的平均利潤為元,求的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}中,a10an+1an+6n+3,數(shù)列{bn}滿足bnn,則數(shù)列{bn}的最大項為第_____

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給出下列四個命題

①四面體中,,,則

②已知雙曲線的兩條漸近線的夾角為,則雙曲線的離心率為2

③若正數(shù)滿足,則

④向量,若存在實數(shù),使得,則

其中真命題的序號是______(寫出所有真命題的序號).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,曲線C的參數(shù)為α為參數(shù)),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,直線l的極坐標方程為

1)寫出曲線C的普通方程和直線l的參數(shù)方程;

2)設(shè)點Pm,0),若直線l與曲線C相交于AB兩點,且|PA||PB|1,求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在正方體中,是棱的中點,是側(cè)面內(nèi)的動點,且平面,則與平面所成角的正切值構(gòu)成的集合是(

A.B.

C.D.

查看答案和解析>>

同步練習冊答案