分析 根據(jù)題意,利用兩角和的正切公式,化為關(guān)于tanβ的一元二次方程,利用判別式求出tanα的最小值.
解答 解:∵tan(α+β)-2tanβ=0,
∴tan(α+β)=2tanβ,
∴$\frac{tanα+tanβ}{1-tanαtanβ}$=2tanβ,
∴2tanαtan2β-tanβ+tanα=0,①
∴α,β∈($\frac{3π}{2}$,2π),
∴方程①有兩負(fù)根,tanα<0,
∴△=1-8tan2α≥0,
∴tan2α≤$\frac{1}{8}$,
∴-$\frac{\sqrt{2}}{4}$≤tanα<0;
即tanα的最小值是-$\frac{\sqrt{2}}{4}$.
故答案為:-$\frac{\sqrt{2}}{4}$.
點(diǎn)評(píng) 本題考查兩角和與差的正切公式,也考查了一元二次方程與根與系數(shù)的應(yīng)用問(wèn)題,是綜合性題目.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 20π | B. | 40π | C. | 50π | D. | 60π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $[\frac{3}{2},+∞)$ | B. | $[\frac{1}{2},\frac{3}{2}]$ | C. | $[\frac{1}{2},\frac{5}{2}]$ | D. | $[\frac{1}{2},+∞)$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 充分不必要 | B. | 必要不充分 | ||
C. | 充要條件 | D. | 既不充分也不必要 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | a>b>c | B. | b>a>c | C. | b>c>a | D. | a>c>b |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com