【題目】有五張卡片,其中紅色卡片三張,標(biāo)號分別為1,2,3;藍(lán)色卡片兩張,標(biāo)號分別為1,2.

1)將紅色卡片和藍(lán)色卡片分別放在兩個袋中,然后從兩個袋中各取一張卡片,求兩張卡片數(shù)字之積為偶數(shù)的概率

2)將五張卡片放在一個袋子中,從中任取兩張,求兩張卡片顏色不同的概率

【答案】1 2

【解析】

古典概型的概率等于滿足事件A的基本事件的個數(shù)與基本事件總數(shù)之比,解決此類題目,一般用列舉法.

1)將紅色卡片和藍(lán)色卡片分別放在兩個袋中,然后從兩個袋中各取一張卡片的所有可能情況有如下6種:紅1藍(lán)1,紅1藍(lán)2,紅2藍(lán)1,紅2藍(lán)2,紅3藍(lán)1,紅3藍(lán)2.

其中兩張卡片數(shù)字之積為偶數(shù)有4種:紅1藍(lán)2,紅2藍(lán)1,紅2藍(lán)2,紅3藍(lán)2.

故所求的概率為.

2)將五張卡片放在一個袋子中,從中任取兩張的所有情況有如下10種:紅12,紅13,紅1藍(lán)1,紅1藍(lán)2,紅23,紅2藍(lán)1,紅2藍(lán)2,紅3藍(lán)1,紅3藍(lán)2,藍(lán)1藍(lán)2.

其中兩張卡片顏色不同的情況有6種:紅1藍(lán)1,紅1藍(lán)2,紅2藍(lán)1,紅2藍(lán)2,紅3藍(lán)1,紅3藍(lán)2.故所求的概率為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知過定點(diǎn)且與直線垂直的直線與軸、軸分別交于點(diǎn),點(diǎn)滿足.

1)若以原點(diǎn)為圓心的圓有唯一公共點(diǎn),求圓的軌跡方程;

2)求能覆蓋的最小圓的面積;

3)在(1)的條件下,點(diǎn)在直線上,圓上總存在兩個不同的點(diǎn)使得為坐標(biāo)原點(diǎn)),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在四棱錐中,底面是邊長為1的菱形,,,,、分別為的中點(diǎn).

1)證明:直線平面;

2)求異面直線所成角的大;

3)求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列有關(guān)命題的說法正確的是__________________.

①命題x23x20,則x1”的逆否命題為:若x≠1,則x23x2≠0

x1x23x20的充分不必要條件

③若pq為假命題,則p,q均為假命題

④對于命題pxR,使得x2x1<0,則非pxR, 均有x2x1≥0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在邊長為3的菱形中,已知,且.將梯形沿直線折起,使平面,如圖2,分別是上的點(diǎn).

(1)若平面平面,求的長;

(2)是否存在點(diǎn),使直線與平面所成的角是?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題中,正確的是(

A.一條直線與兩個平行平面中的一個平行,則必與另一個平面平行

B.空間中兩條直線要么平行,要么相交

C.空間中任意的三個點(diǎn)都能唯一確定一個平面

D.對于空間中任意兩條直線,總存在平面與這兩條直線都平行

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在多面體中,、均垂直于平面,,,.

1)求與平面所成角的大;

2)求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】焦點(diǎn)在x軸上的橢圓C經(jīng)過點(diǎn),橢圓C的離心率為,是橢圓的左、右焦點(diǎn),P為橢圓上任意點(diǎn).

1)求橢圓的標(biāo)準(zhǔn)方程;

2)若點(diǎn)M的中點(diǎn)(O為坐標(biāo)原點(diǎn)),過M且平行于OP的直線l交橢圓CA,B兩點(diǎn),是否存在實(shí)數(shù),使得;若存在,請求出的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,左、右焦點(diǎn)分別為、,為橢圓C上一點(diǎn),且的中點(diǎn)By軸上,.

1)求橢圓C的標(biāo)準(zhǔn)方程:

2)若直線交橢圓于P、Q兩點(diǎn),若PQ的中點(diǎn)為N,O為原點(diǎn),直線ON交直線于點(diǎn)M,求的最大值.

查看答案和解析>>

同步練習(xí)冊答案