【題目】若方程所表示的曲線為C,給出下列四個命題:

①若C為橢圓,則1t4t;

②若C為雙曲線,則t4t1;

③曲線C不可能是圓;

④若C表示橢圓,且長軸在x軸上,則1t.

其中正確的命題是________(把所有正確命題的序號都填在橫線上)

【答案】①②

【解析】試題分析:據(jù)橢圓方程的特點列出不等式求出t的范圍判斷出錯,據(jù)雙曲線方程的特點列出不等式求出t的范圍,判斷出對;據(jù)圓方程的特點列出方程求出t的值,判斷出錯;據(jù)橢圓方程的特點列出不等式求出t的范圍,判斷出錯.解:若C為橢圓應(yīng)該滿足(4-t)(t-1)0,4-t≠t-1

1t4t≠錯,若C為雙曲線應(yīng)該滿足(4-t)(t-1)<0t4t1對,當(dāng)4-t=t-1t=表示圓,故錯,若C表示橢圓,且長軸在x軸上應(yīng)該滿足4-tt-101<t<,因此錯,故填寫

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線的離心率為,圓心在軸的正半軸上的圓與雙曲線的漸近線相切,且圓的半徑為2,則以圓的圓心為焦點的拋物線的標(biāo)準(zhǔn)方程為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù), = .

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)若函數(shù)有兩個零點.

(1)求滿足條件的最小正整數(shù)的值;

(2)求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知過原點的動直線l與圓相交于不同的兩點A,B.

(1)求線段AB的中點M的軌跡C的方程;

(2)是否存在實數(shù)k,使得直線L:y=k(x﹣4)與曲線C只有一個交點?若存在,求出k的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】n種不同的顏色為下列兩塊廣告牌著色,(如圖甲、乙),要求在A,B,C,D四個區(qū)域中相鄰(有公共邊界)的區(qū)域不用同一顏色.

(1)若n=6,則為甲圖著色時共有多少種不同的方法;

(2)若為乙圖著色時共有120種不同方法,求n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱-的底面是邊長為2的等邊三角形,底面,點分別是棱上的點,且

(1)證明:平面平面;

(2)若,求點到平面的距離

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】△ABC中,A、B、C的對邊分別為a,b,c,面積為S,滿足S= (a2+b2﹣c2).
(1)求C的值;
(2)若a+b=4,求周長的范圍與面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為等差數(shù)列,前n項和為是首項為2的等比數(shù)列,且公比大于0,,,

1的通項公式;

2求數(shù)列的前n項和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正項數(shù)列{an},其前n項和Sn滿足6Sn=an2+3an+2,且a1 , a2 , a6是等比數(shù)列{bn}的前三項.
(1)求數(shù)列{an}與{bn}的通項公式;
(2)記Tn=a1b1+a2b2+…+anbn , n∈N*,求Tn

查看答案和解析>>

同步練習(xí)冊答案