已知函數(shù)),

(Ⅰ)若曲線在它們的交點處具有公共切線,求的值;

(Ⅱ)當時,求函數(shù)在區(qū)間上的最大值.

 

【答案】

(Ⅰ)

(Ⅱ)(1)當時,

(2)當時,

【解析】

試題分析:(Ⅰ)   

4分

(Ⅱ)令

  ,上單調(diào)遞增,在上單調(diào)遞減

  

(1)當時,

(2)當時,

13分

考點:本題主要考查導(dǎo)數(shù)的幾何意義,直線方程,應(yīng)用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、最值。

點評:中檔題,本題屬于導(dǎo)數(shù)應(yīng)用中的基本問題,利用曲線切線的斜率,等于函數(shù)在切點的導(dǎo)函數(shù)值,建立a,b,c的方程組,達到解題目的。通過研究函數(shù)的單調(diào)性,明確了最值情況。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax3+bx2-2x+c在x=-2時有極大值6,在x=1時有極小值,
(1)求a,b,c的值;
(2)求f(x)在區(qū)間[-3,3]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2
3
a•sinx•cosx•cos2x-6cos22x+3
,且f(
π
24
)=0

(Ⅰ)求函數(shù)f(x)的周期T和單調(diào)遞增區(qū)間;
(Ⅱ)若f(θ)=-3,且θ∈(-
24
π
24
)
,求θ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=asinx+bcosx+c的圖象上有一個最低點(
11π
6
,-1)

(Ⅰ)如果x=0時,y=-
3
2
,求a,b,c.
(Ⅱ)如果將圖象上每個點的縱坐標不變,橫坐標縮小到原來的
3
π
,然后將所得圖象向左平移一個單位得到y(tǒng)=f(x)的圖象,并且方程f(x)=3的所有正根依次成為一個公差為3的等差數(shù)列,求y=f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-4,設(shè)曲線y=f(x)在點(xn,f(xn))處的切線與x軸的交點為(xn+1,0)(n∈N*),其中x1為正實數(shù).
(Ⅰ)用xn表示xn+1
(Ⅱ)若x1=4,記an=lg
xn+2xn-2
,證明數(shù)列{an}成等比數(shù)列,并求數(shù)列{xn}的通項公式;
(Ⅲ)若x1=4,bn=xn-2,Tn是數(shù)列{bn}的前n項和,證明Tn<3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則函數(shù)f(x)的解析式為( 。
A、f(x)=2sin(
1
2
x+
π
6
)
B、f(x)=2sin(
1
2
x-
π
6
)
C、f(x)=2sin(2x-
π
6
)
D、f(x)=2sin(2x+
π
6
)

查看答案和解析>>

同步練習(xí)冊答案