已知tanx=2,則1+2sin2x=(  )
分析:根據(jù)tanx=2,利用同角三角函數(shù)的商數(shù)關(guān)系算出cosx=
1
2
sinx,代入sin2x+cos2x=1解出sin2x=
4
5
,由此即可得出1+2sin2x的值.
解答:解:∵tanx=2,∴
sinx
cosx
=2,得cosx=
1
2
sinx.
又∵sin2x+cos2x=1,
∴sin2x+(
1
2
sinx)2=1,得
5
4
sin2x=1,解得sin2x=
4
5

由此可得1+2sin2x=1+2×
4
5
=
13
5

故選:D
點(diǎn)評(píng):本題給出x的正切之值,求1+2sin2x的值,著重考查了同角三角函數(shù)的基本關(guān)系等知識(shí),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知tanx=2,則sin2x+1=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知tanx=2,則tan(
π
4
+2x)
=
-
1
7
-
1
7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知tanx=2,則
2sinx-3cosx4sinx-9cosx
=
-1
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知tanx=2,則
3sinx+2cosx3cosx-sinx
的值為
8
8

查看答案和解析>>

同步練習(xí)冊(cè)答案