【題目】已知圓O1與圓O:x2+y2=r(r>0)交于點P(﹣1,y0).且關(guān)于直線x+y=1對稱.
(1)求圓O及圓O1的方程:
(2)在第一象限內(nèi).圓O上是否存在點A,過點A作直線l與拋物線y2=4x交于點B,與x軸交于點D,且以點D為圓心的圓過點O,A,B?若存在.求出點A的坐標;若不存在.說明理由.
【答案】(1)圓O1的方程為(x﹣1)2+(y﹣1)2=5;圓O的方程為x2+y2=5(2)不存在,詳見解析
【解析】
(1)由題意可得在直線上,可得的坐標,進而得到圓的方程;設(shè)關(guān)于直線的對稱點為,由兩直線垂直的條件和中點坐標公式可得,,進而得到圓的方程;
(2)假設(shè)在第一象限內(nèi).圓上存在點,且以點為圓心的圓過點,,,則,為的中點,設(shè)出,的方程,分別聯(lián)立圓的方程和拋物線的方程,求得,的坐標,再由中點坐標公式,解方程即可判斷存在性.
(1)圓O1與圓O:x2+y2=r(r>0)交于點P(﹣1,y0).且關(guān)于直線x+y=1對稱,
可得P在直線x+y=1上,即有﹣1+y0=1,即y0=2,P(﹣1,2),
可得r=1+4=5,則圓O的方程為x2+y2=5;
設(shè)(0,0)關(guān)于直線x+y=1的對稱點為(a,b),可得a=b,a+b=2,
解得a=b=1,可得圓O1的方程為(x﹣1)2+(y﹣1)2=5;
(2)假設(shè)在第一象限內(nèi).圓O上存在點A,且以點D為圓心的圓過點O,A,B,
則OA⊥OB,D為AB的中點,由題意可得直線OA的斜率存在且大于0,設(shè)OA的方程為y=kx(k>0),
OB:yx,
由解得x,即有A(,k),
由可得x=4k2,即有B(4k2,﹣4k),
由D為AB的中點,可得k4k=0,
化為16k2+11=0,方程無實數(shù)解,
則符合條件的k不存在,所以滿足條件的A不存在.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)是定義在(﹣1,1)上的奇函數(shù),且f(),
(1)確定函數(shù)的解析式;
(2)用定義法判斷函數(shù)的單調(diào)性;
(3)解不等式;f(t﹣1)+f(t)<0.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(為常數(shù))的圖像與軸交于點,曲線在點處的切線斜率為.
(1)求的值及函數(shù)的極值;
(2)證明:當時,;
(3)證明:對任意給定的正數(shù),總存在,使得當時,恒有.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)為常數(shù)).
(1)討論的單調(diào)性;
(2)是的導(dǎo)函數(shù),若存在兩個極值點,求證:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在直四棱柱ABCD-A1B1C1D1中,AD//平面BCC1B1,AD⊥DB.求證:
(1)BC//平面ADD1A1;
(2)平面BCC1B1⊥平面BDD1B1.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知是橢圓的左右頂點,點為橢圓上一點,點關(guān)于軸的對稱點為,且.
(1)若橢圓經(jīng)過圓的圓心,求橢圓的方程;
(2)在(1)的條件下,若過點的直線與橢圓相交于不同的兩點,設(shè)為橢圓上一點,且滿足(為坐標原點),當時,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某快遞公司收取快遞費用的標準是:重量不超過的包裹收費元;重量超過的包裹,除收費元之外,超過的部分,每超出(不足,按計算)需再收元.該公司將最近承攬的件包裹的重量統(tǒng)計如下:
包裹重量(單位: ) | |||||
包裹件數(shù) |
公司對近天,每天攬件數(shù)量統(tǒng)計如下表:
包裹件數(shù)范圍 | |||||
包裹件數(shù) (近似處理) | |||||
天數(shù) |
以上數(shù)據(jù)已做近似處理,并將頻率視為概率.
(1)計算該公司未來天內(nèi)恰有天攬件數(shù)在之間的概率;
(2)(i)估計該公司對每件包裹收取的快遞費的平均值;
(ii)公司將快遞費的三分之一作為前臺工作人員的工資和公司利潤,剩余的用作其他費用.目前前臺有工作人員人,每人每天攬件不超過件,工資元.公司正在考慮是否將前臺工作人員裁減人,試計算裁員前后公司每日利潤的數(shù)學期望,并判斷裁員是否對提高公司利潤更有利?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】從某工廠生產(chǎn)的某種產(chǎn)品中抽取1000件,測量這些產(chǎn)品的一項質(zhì)量指標值,由測量結(jié)果得如下頻率分布直方圖:
(1)求這1000件產(chǎn)品質(zhì)量指標值的樣本平均數(shù)和樣本方差(同一組數(shù)據(jù)用該區(qū)間的中點值作代表)
(2)由頻率分布直方圖可以認為,這種產(chǎn)品的質(zhì)量指標值服從正態(tài)分布,其中以近似為樣本平均數(shù),近似為樣本方差.
(。├迷撜龖B(tài)分布,求;
(ⅱ)某用戶從該工廠購買了100件這種產(chǎn)品,記表示這100件產(chǎn)品中質(zhì)量指標值為于區(qū)間(127.6,140)的產(chǎn)品件數(shù),利用(。┑慕Y(jié)果,求.
附:.若,則,.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com