已知中心在原點的橢圓的右焦點為,離心率等于,則橢圓的方程是(    ) 
A.B.
C.D.
D

試題分析:由題意設橢圓的方程為.因為橢圓C的右焦點為F(1,0),所以c=1,又離心率等于,即,所以a=2,則.所以橢圓的方程為.故選D.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知焦點在軸上的橢圓過點,且離心率為,為橢圓的左頂點.
(1)求橢圓的標準方程;
(2)已知過點的直線與橢圓交于兩點.
(。┤糁本垂直于軸,求的大小;
(ⅱ)若直線軸不垂直,是否存在直線使得為等腰三角形?如果存在,求出直線的方程;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓.
(1)求橢圓的離心率;
(2)設為原點,若點在橢圓上,點在直線上,且,試判斷直線與圓的位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

(2011•浙江)設F1,F(xiàn)2分別為橢圓+y2=1的焦點,點A,B在橢圓上,若=5;則點A的坐標是 _________ 

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

過點作傾斜角為的直線與曲線C交于不同的兩點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(2013•浙江)如圖,點P(0,﹣1)是橢圓C1+=1(a>b>0)的一個頂點,C1的長軸是圓C2:x2+y2=4的直徑,l1,l2是過點P且互相垂直的兩條直線,其中l(wèi)1交圓C2于A、B兩點,l2交橢圓C1于另一點D.
(1)求橢圓C1的方程;
(2)求△ABD面積的最大值時直線l1的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

橢圓上的點到直線的最大距離是                

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

橢圓的左、右焦點為,過作直線交C于A,B兩點,若是等腰直角三角形,且,則橢圓C的離心率為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知橢圓上任意一點P及點,則的最大值為      

查看答案和解析>>

同步練習冊答案