8.有一段演繹推理:“直線平行于平面,則這條直線平行于平面內(nèi)所有直線;已知直線b?平面α,直線a?平面α,直線b∥平面α,則直線b∥直線a”的結(jié)論是錯(cuò)誤的,這是因?yàn)椋ā 。?table class="qanwser">A.大前提錯(cuò)誤B.小前提錯(cuò)誤C.推理形式錯(cuò)誤D.非以上錯(cuò)誤

分析 分析該演繹推理的三段論,即可得出錯(cuò)誤的原因是什么.

解答 解:該演繹推理的大前提是:若直線平行于平面,則該直線平行于平面內(nèi)所有直線;
小前提是:已知直線b∥平面α,直線a?平面α;
結(jié)論是:直線b∥直線a;
該結(jié)論是錯(cuò)誤的,因?yàn)榇笄疤崾清e(cuò)誤的,
正確敘述是“若直線平行于平面,過(guò)該直線作平面與已知平面相交,則交線與該直線平行”.
故選:A.

點(diǎn)評(píng) 本題通過(guò)演繹推理的三段論敘述,考查了空間中線面平行的性質(zhì)定理的應(yīng)用問(wèn)題,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知函數(shù)f(x)=$\left\{\begin{array}{l}x+1,x≤0\\{log_2}x,x>0\end{array}$,則函數(shù)y=f(f(x))+1的所有零點(diǎn)構(gòu)成的集合為$\left\{{-3,-\frac{1}{2},\frac{1}{4},\sqrt{2}}\right\}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知拋物線C:y2=4x的焦點(diǎn)為F,過(guò)點(diǎn)F且傾斜角為$\frac{π}{3}$的直線與拋物線C相交于P,Q兩點(diǎn),則弦PQ的長(zhǎng)為(  )
A.3B.4C.5D.$\frac{16}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知某幾何體的三視圖如圖所示,則該幾何體的內(nèi)切球的體積為( 。
A.$\frac{1}{4}$πB.$\frac{\sqrt{3}}{4}$πC.$\frac{1}{2}$πD.$\frac{\sqrt{3}}{2}$π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.據(jù)四川省民政廳報(bào)告,2013年6月29日以來(lái),四川省中東部出現(xiàn)強(qiáng)降雨天氣過(guò)程,局地出現(xiàn)大暴雨.暴雨洪澇災(zāi)害已造成遂寧、德陽(yáng)、綿陽(yáng)等12市34縣(市、區(qū))244萬(wàn)人受災(zāi),共造成直接經(jīng)濟(jì)損失85502.41萬(wàn)元.適逢暑假,小王在某小區(qū)調(diào)查了50戶居民由于洪災(zāi)造成的經(jīng)濟(jì)損失,將收集的數(shù)據(jù)分成[0,2000],(2000,4000],(4000,6000],(6000,8000],(8000,10000]五組,并作出頻率分布直方圖(如圖).
(1)小王向班級(jí)同學(xué)發(fā)出為該小區(qū)居民捐款的倡議.現(xiàn)請(qǐng)你解決下列兩個(gè)問(wèn)題:
①若先從損失超過(guò)6000元的居民中隨機(jī)抽出2戶進(jìn)行捐款援助,求這2戶不在同一分組的概率;
②若從損失超過(guò)4000元的居民中隨機(jī)抽出2戶進(jìn)行捐款援助,設(shè)抽出損失超過(guò)8000元的居民為ξ戶,求ξ的分布列和數(shù)學(xué)期望.
(2)洪災(zāi)過(guò)后小區(qū)居委會(huì)號(hào)召小區(qū)居民為洪災(zāi)重災(zāi)區(qū)捐款,小王調(diào)查的50戶居民的捐款情況如表,在表格空白處填寫正確的數(shù)字,并說(shuō)明是否有95%以上的把握認(rèn)為捐款數(shù)額多于或少于500元和自身經(jīng)濟(jì)損失是否到4000元有關(guān)?
經(jīng)濟(jì)損失不超過(guò)4000元經(jīng)濟(jì)損失超過(guò)4000元合計(jì)
捐款超過(guò)500元30939          
捐款不超過(guò)500元5611
合計(jì)351550
351550
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
附:臨界值表參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知O為△ABC的外心,AB=2,AC=3,如果$\overrightarrow{AO}=x\overrightarrow{AB}+y\overrightarrow{AC}$,其中x、y滿足x+2y=1且xy≠0,則cos∠BAC=$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知向量$\overrightarrow{a}$、$\overrightarrow$的夾角為$\frac{π}{3}$,|$\overrightarrow{a}$|=2,|$\overrightarrow$|=1,則|$\overrightarrow{a}$+2$\overrightarrow$|=$2\sqrt{3}$,|$\overrightarrow{a}$+$\overrightarrow$|•|$\overrightarrow{a}$-$\overrightarrow$|的值是$\sqrt{21}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.設(shè)函數(shù)y=f(x)是定義域?yàn)镽,并且滿足f(x+y)=f(x)+f(y),f($\frac{1}{3}$)=1,且x>0時(shí),f(x)>0
(1)求f(0)值
(2)判斷函數(shù)奇偶性并證明
(3)如果f(x)+f(2+x)<2,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知復(fù)數(shù)z滿足$iz=\frac{4+3i}{1+2i}$,則復(fù)數(shù)z在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步練習(xí)冊(cè)答案