設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,a2=5,S5=35,設(shè)數(shù)列{bn}滿足an=log2bn.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{bn}的前n項(xiàng)和Tn;
(3)設(shè)Gn=a1•b1+a2•b2+…+an•bn,求Gn.
分析:(1)由題意知
,解這個(gè)方程求出a
1,d,能夠得到a
n.
(2)由a
n=log
2b
n得到
bn=2an=22n+1,
==4,所以
Tn=23+25++22n+1==(4n-1).
(3)G
n=3•2
3+5•2
5+…+(2n+1)•2
2n+1,4G
n=3•2
5+5•2
7+…+(2n-1)•2
2n+1+(2n+3)•2
2n+3,兩式相減得:-3G
n=3•2
3+(2•2
5+2•2
7+2•2
2n+1)-(2n+1)•2
2n+3,由此能導(dǎo)出G
n.
解答:解:(1)由題意得
,解得
∴a
n=2n+1(5分)
(2)由a
n=log
2b
n得到
bn=2an=22n+1,
∴
==4,∴數(shù)列{b
n}是等比數(shù)列,其中b
1=8,q=4,
∴
Tn=23+25++22n+1==(4n-1).(10分)
(3)G
n=3•2
3+5•2
5+…+(2n+1)•2
2n+1∴4G
n=3•2
5+5•2
7+…+(2n-1)•2
2n+1+(2n+3)•2
2n+3兩式相減得:-3G
n=3•2
3+(2•2
5+2•2
7+2•2
2n+1)-(2n+1)•2
2n+3即:-3G
n=24+(2
6+2
8+2
2n+2)-(2n+1)•2
2n+3=
24+-(2n+1)•22n+3=
∴
Gn=.(15分)
點(diǎn)評(píng):本題考查數(shù)列的性質(zhì)和應(yīng)用,解題時(shí)要認(rèn)真審題,仔細(xì)解答.