對于給定數(shù)列{cn},如果存在實(shí)常數(shù)p,q,使得cn+1=pcn+q對于任意n∈N*都成立,我們稱數(shù)列{cn}是“M類數(shù)列”.
(I)若an=2n,bn=3•2n,n∈N*,數(shù)列{an}、{bn}是否為“M類數(shù)列”?若是,指出它對應(yīng)的實(shí)常數(shù)p&,q,若不是,請說明理由;
(Ⅱ)若數(shù)列{an}滿足a1=2,an+an+1=3t•2n(n∈N*),t為常數(shù).
(1)求數(shù)列{an}前2009項(xiàng)的和;
(2)是否存在實(shí)數(shù)t,使得數(shù)列{an}是“M類數(shù)列”,如果存在,求出t;如果不存在,說明理由.
【答案】分析:對于(I)因?yàn)閍n=2n,bn=3•2n,則可驗(yàn)證an+1與an的關(guān)系,bn+1與bn的關(guān)系*,寫出表達(dá)式,即可驗(yàn)證數(shù)列{an}、{bn}是否為“M類數(shù)列”.
對于(II)(1)因?yàn)閍n+an+1=3t•2n,可依此相加列出數(shù)列{an}前2009項(xiàng)和等式,可以看出是等比數(shù)列的求和公式求得.
(2)可假設(shè)數(shù)列{an}是“M類數(shù)列”,則存在實(shí)常數(shù)p,q使得an+1=pan+q對于任意n∈N*都成立,且有an+2=pan+1+q對于任意n∈N*都成立,再根據(jù)題意解除t,求出對應(yīng)常數(shù)即可.
解答:解:(I)因?yàn)閍n=2n,則有an+1=an+2,n∈N*
故數(shù)列{an}是“M類數(shù)列”,對應(yīng)的實(shí)常數(shù)分別為1,2.
因?yàn)閎n=3•2n,則有bn+1=2bnn∈N*
故數(shù)列{bn}是“M類數(shù)列”,對應(yīng)的實(shí)常數(shù)分別為2,0.
(II)(1)因?yàn)閍n+an+1=3t•2n(n∈N*)
則有a2+a3=3t•22,a4+a5=3t•24,a2006+a2007=3t•22006,a2008+a2009=3t•22008.
故數(shù)列{an}前2009項(xiàng)的和S2009=a1+(a2+a3)+(a4+a5)++(a2006+a2007)+(a2008+a2009)+(a2008+a2009)=2+3t•22+3t•24++3t•22006+3t•22008=2+t(22010-4)
故答案為2+t(22010-4)
(2)若數(shù)列{an}是“M類數(shù)列”,則存在實(shí)常數(shù)p,q
使得an+1=pan+q對于任意n∈N*都成立,
且有an+2=pan+1+q對于任意n∈N*都成立,
因此(an+1+an+2)=p(an+an+1)+2q對于任意n∈N*都成立,
而an+an+1=3t•2n(n∈N*),且an+1+an+2=3t•2n+1(n∈N*)
則有3t•2n+1=3t•p2n+2q對于任意n∈N*都成立,可以得到t(p-2)=0,q=0,
①當(dāng)p=2,q=0時(shí),an+1=2an,an=2n,t=1,經(jīng)檢驗(yàn)滿足條件.
②當(dāng)t=0,q=0時(shí),an+1=-an,an=2(-1)n-1,p=-1經(jīng)檢驗(yàn)滿足條件.
因此當(dāng)且僅當(dāng)t=1或t=0,時(shí),數(shù)列{an}也是“M類數(shù)列”.對應(yīng)的實(shí)常數(shù)分別為2,0,或-1,0.
點(diǎn)評:此題主要考查數(shù)列的概念及其簡單的表示法,由題目定義一個(gè)數(shù)列求這個(gè)數(shù)列的一系列性質(zhì)的問題.題目較復(fù)雜屬于綜合題.