二次函數(shù)f(x)滿足f(0)=-3,f(1)=f(-3)=0,那么f(x)=________.

x2+2x-3
分析:可設設f(x)=ax2+bx+c,利用已知條件可以求得a、b、c的值,問題解決.
解答:設f(x)=ax2+bx+c∴f(0)=c=-3
  由
  a=1,b=2,c=-3,
∴f(x)=x2+2x-3.
 故答案為:x2+2x-3.
點評:本題考查二次函數(shù)解析式的求法,方法是方程組法,屬于容易題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

二次函數(shù)f(x)滿足f(x+1)-f(x)=2x,且f(0)=1,則函數(shù)y=f(x)-3的零點是
-1,2
-1,2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知二次函數(shù)f(x)滿足:①在x=1時有極值;②二次函數(shù)圖象過點(0,-3),且在該點處的切線與直線2x+y=0平行.
(1)求f(x)的解析式;
(2)求函數(shù)g(x)=f(x2)的單調(diào)遞增區(qū)間與極大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)已知f(
x
+1)=x+2
,求函數(shù)f(x)的解析式;
(2)若二次函數(shù)f(x)滿足f(x+1)-f(x)=2x且f(0)=1,求f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

二次函數(shù)f(x)滿足:f(0)=2,f(x)=f(-2-x),它的導函數(shù)的圖象與直線y=2x平行.
(I)求f(x)的解析式;
(II)若函數(shù)g(x)=xf(x)-x的圖象與直線y=m有三個公共點,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)已知一次函數(shù)f(x)滿足條件:f(3)=7,f(5)=-1,求f(0),f(1)的值;
(2)已知二次函數(shù)f(x)滿足條件:f(0)=1,f(x+1)-f(x)=2x,求f(x)的解析式.

查看答案和解析>>

同步練習冊答案