【題目】下列4個命題:

(1)有兩個面互相平行,其余四個面都是全等的等腰梯形的六面體是正四棱臺;

(2)底面是正三角形,其余各面都是等腰三角形的棱錐是正三棱錐;

(3)各側(cè)面都是等腰三角形的四棱錐是正四棱錐;

(4)底面是正三角形,相鄰兩側(cè)而所成的二面角都相等的三棱錐是正三棱錐

中,假命題的個數(shù)為( ).

A. 1 B. 2 C. 3 D. 4

【答案】D

【解析】

對所給4個命題,各舉反例如下:

如圖,兩個全等的矩形同垂直于其中心連線,且對應(yīng)邊互相垂直(相當于一個矩形繞中心線旋轉(zhuǎn)了),這個六面體不是正四梭臺;

如圖,三梭錐中,,,這個三棱錐不是正三梭錐;

如圖,四棱錐是圓錐的內(nèi)接棱錐,其中是圓錐底面的直徑,四梭錐不是正四棱錐;

如圖,正三棱錐中,棱內(nèi)存在點,使,則三棱錐不是正三棱錐.

D.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知等差數(shù)列的前項和為,且滿足.

1)求數(shù)列的通項公式及前項和;

2)求數(shù)列的前項和

3)若,如果對任意,都有,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),

(1)證明:,直線都不是曲線的切線;

(2)若,使成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某便利店每天以每件5元的價格購進若干鮮奶,然后以每件10元價格出售,如果當天賣不完,剩下的鮮奶作餐廚垃圾處理.便利店記錄了100天這種鮮奶的日需求量(單位:件)如表所示:

日需求量n(件)

140

150

160

170

180

190

200

頻數(shù)

10

20

16

16

15

12

11

100天記錄的各需求量的頻率作為各需求量發(fā)生的概率.

1)若便利店一天購進160件這種鮮奶,X表示當天的利潤(單位:元),求X的分布列與數(shù)學期望及方差;

2)若便利店一天購進160件或170件這種鮮奶,僅從獲得利潤大的角度考慮,你認為應(yīng)購進160件還是170件?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某商場舉行優(yōu)惠促銷活動,顧客僅可以從以下兩種優(yōu)惠方案中選擇一種.

方案一:每滿100元減20元;

方案二:滿100元可抽獎一次.具體規(guī)則是從裝有2個紅球、2個白球的箱子隨機取出3個球(逐個有放回地抽。,所得結(jié)果和享受的優(yōu)惠如下表:(注:所有小球僅顏色有區(qū)別)

紅球個數(shù)

3

2

1

0

實際付款

7

8

9

原價

1)該商場某顧客購物金額超過100元,若該顧客選擇方案二,求該顧客獲得7折或8折優(yōu)惠的概率;

2)若某顧客購物金額為180元,選擇哪種方案更劃算?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐的底面是邊長為1的正方形,垂直于底面,.

1)求證; 

2)求平面與平面所成二面角的大;

3)設(shè)棱的中點為,求異面直線所成角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某快遞公司收取快遞費用的標準是:重量不超過的包裹收費元;重量超過的包裹,除收費元之外,超過的部分,每超出(不足,按計算)需再收元.

該公司將近天,每天攬件數(shù)量統(tǒng)計如下:

包裹件數(shù)范圍

包裹件數(shù)

(近似處理)

天數(shù)

(1)某人打算將, , 三件禮物隨機分成兩個包裹寄出,求該人支付的快遞費不超過元的概率;

(2)該公司從收取的每件快遞的費用中抽取元作為前臺工作人員的工資和公司利潤,剩余的作為其他費用.前臺工作人員每人每天攬件不超過件,工資元,目前前臺有工作人員人,那么,公司將前臺工作人員裁員人對提高公司利潤是否更有利?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xoy中,曲線C的參數(shù)方程是(θ為參數(shù)).以坐標原點O為極點,x軸正半軸為極軸,建立極坐標系,直線l的極坐標方程為:

(1)求曲線C的極坐標方程;

(2)設(shè)直線θ=與直線l交于點M,與曲線C交于P,Q兩點,已知|OM||OP||OQ)=10,求t的值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙兩班各派三名同學參加知識競賽,每人回答一個問題,答對得10分,答錯得0分,假設(shè)甲班三名同學答對的概率都是,乙班三名同學答對的概率分別是,,且這六名同學答題正確與否相互之間沒有影響.

1)記“甲、乙兩班總得分之和是60分”為事件,求事件發(fā)生的概率;

2)用表示甲班總得分,求隨機變量的概率分布和數(shù)學期望.

查看答案和解析>>

同步練習冊答案