已知f(x)=sin(ω>0),f()=f(),且f(x)在區(qū)間上有最小值,無最大值,則ω=   
【答案】分析:根據(jù)f()=f(),且f(x)在區(qū)間上有最小值,無最大值,確定最小值時(shí)的x值,然后確定ω的表達(dá)式,進(jìn)而推出ω的值.
解答:解:如圖所示,
∵f(x)=sin,
且f()=f(),
又f(x)在區(qū)間內(nèi)只有最小值、無最大值,
∴f(x)在處取得最小值.
ω+=2kπ-(k∈Z).
∴ω=8k-(k∈Z).
∵ω>0,
∴當(dāng)k=1時(shí),ω=8-=
當(dāng)k=2時(shí),ω=16-=,此時(shí)在區(qū)間內(nèi)已存在最大值.
故ω=
故答案為:
點(diǎn)評(píng):本題考查由y=Asin(ωx+φ)的部分圖象確定其解析式,考查邏輯思維能力,分析判斷能力,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=sin(x+
π
2
),g(x)=cos(x-
π
2
),則f(x)的圖象( 。
A、與g(x)的圖象相同
B、與g(x)的圖象關(guān)于y軸對(duì)稱
C、向左平移
π
2
個(gè)單位,得到g(x)的圖象
D、向右平移
π
2
個(gè)單位,得到g(x)的圖象

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
sinπx   (x<0)
f(x-1)-1 (x>0)
,則f(-
11
6
)+f(
11
6
)=
-2
-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=sin(ωx+
π
3
)(ω>0)的圖象與y=-1的圖象的相鄰兩交點(diǎn)間的距離為π,要得到y(tǒng)=f(x)的圖象,只需把y=cos2x的圖象( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=sin(x+
π
2
),g(x)=cos(x-
π
2
),則f(x)的圖象( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=sinπx.
(1)設(shè)g(x)=
f(x),(x≥0)
g(x+1)+1,(x<0)
,求g(
1
4
)
g(-
1
3
)
;
(2)設(shè)h(x)=f2(x)+
3
f(x)cosπx+1
,求h(x)的最大值及此時(shí)x值的集合.

查看答案和解析>>

同步練習(xí)冊(cè)答案