13.已知數(shù)列{an}滿足$\frac{a_1}{2}+\frac{a_2}{2^2}+\frac{a_3}{2^3}+…+\frac{a_n}{2^n}={n^2}$+n.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若bn=$\frac{{{{(-1)}^n}{a_n}}}{2}$,求數(shù)列{bn}的前n項和Sn

分析 (I)利用數(shù)列遞推關(guān)系即可得出.
(II)利用錯位相減法即可得出.

解答 解:(Ⅰ)$\frac{a_1}{2}+\frac{a_2}{2^2}+\frac{a_3}{2^3}+…+\frac{a_n}{2^n}={n^2}+n$…①,
∴當n≥2時,$\frac{a_1}{2}+\frac{a_2}{2^2}+\frac{a_3}{2^3}+…+\frac{{{a_{n-1}}}}{{{2^{n-1}}}}={(n-1)^2}+n-1$②
①-②得$\frac{a_n}{2^n}=2n(n≥2)$,∴${a_n}=n{2^{n+1}}(n≥2)$.…(5分)
又∵當n=1時,$\frac{a_1}{2}=1+1$,∴a1=4,∴${a_n}=n{2^{n+1}}$.…(6分)
(Ⅱ)${b_n}=\frac{{{{(-1)}^n}{a_n}}}{2}=n{(-2)^n}$,${S_n}=1×{(-2)^1}+2×{(-2)^2}+3×{(-2)^3}+…+n×{(-2)^n}$…③
$(-2){S_n}=1×{(-2)^2}+2×{(-2)^3}+3×{(-2)^4}+…+(n-1)×{(-2)^n}+n{(-2)^{n+1}}$…④
∴$3{S_n}=(-2)+{(-2)^2}+{(-2)^3}+{(-2)^4}+…+{(-2)^n}-n{(-2)^{n+1}}=\frac{{-2[1-{{(-2)}^n}]}}{3}-n{(-2)^{n+1}}$
∴${S_n}=-\frac{{(3n+1){{(-2)}^{n+1}}+2}}{9}$.…(12分)

點評 本題考查了等比數(shù)列的通項公式與求和公式、數(shù)列遞推關(guān)系,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

3.已知$\overrightarrow{m}$=($\sqrt{3}$sin$\frac{x}{3}$,cos$\frac{x}{3})$,$\overrightarrow{n}$=(cos$\frac{x}{3}$,cos$\frac{x}{3}$),f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$.
(1)若函數(shù)f(x)的最小正周期和單調(diào)遞增區(qū)間;
(2)若a,b,c分別是△ABC的內(nèi)角A,B,C所對的邊,且a=2,(2a-b)cosC=ccosB,$f(A)=\frac{3}{2}$,求c.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.在如圖所示的矩形ABCD中,AB=4,AD=2,E為線段BC上的點,則$\overrightarrow{AE}•\overrightarrow{DE}$的最小值為( 。
A.12B.15C.17D.16

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.函數(shù)$f(x)=cos(2x-\frac{2π}{3})+4{cos^2}x-2-\frac{3}{3x-π}(x∈[-\frac{11π}{12},\frac{19π}{12}])$所有零點之和為( 。
A.$\frac{2π}{3}$B.$\frac{4π}{3}$C.D.$\frac{8π}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知$\overrightarrow a=(cosα,sinα),\overrightarrow b=(cos(-α),sin(-α))$,那么$\overrightarrow a•\overrightarrow b=0$是α=kπ+$\frac{π}{4}$(k∈Z)的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知a>2,函數(shù)f(x)=$\left\{\begin{array}{l}{log_a}({x+1})+x-2,x>0\\ x+4-{(\frac{1}{a})^{x+1}}\begin{array}{l}{\;}{x≤0}\end{array}\end{array}$若函數(shù)f(x)有兩個零點x1,x2,則( 。
A.?a>2,x1-x2=0B.?a>2,x1-x2=1C.?a>2,|x1-x2|=2D.?a>2,|x1-x2|=3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知函數(shù)f(x)=ln(1+x)-x-ax2,a∈R.
(Ⅰ)若函數(shù)f(x)在區(qū)間$[{-\frac{1}{2},-\frac{1}{3}}]$上有單調(diào)遞增區(qū)間,求實數(shù)a的取值范圍;
(Ⅱ)證明不等式:$\frac{1}{ln2}+\frac{1}{ln3}+…+\frac{1}{ln(n+1)}>\frac{n}{n+1}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.若P(2,1)為圓(x-1)2+y2=25的弦AB的中點,則直線AB的方程為(  )
A.2x+y-3=0B.x+y-1=0C.x+y-3=0D.2x-y-5=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知圓錐的底面半徑為2,且它的側(cè)面展開圖是一個半圓,則這個圓錐的表面積為( 。
A.B.12πC.D.10π

查看答案和解析>>

同步練習冊答案