若空間某條直線與某長(zhǎng)方體的十二條棱所在直線成角均為α,則cosα=
3
3
3
3
分析:由異面直線所成的角的定義,過(guò)一個(gè)頂點(diǎn)與從該頂點(diǎn)出發(fā)的三條棱所成的角相等,就與所有棱所成的角相等,
再根據(jù)正方體的體對(duì)角線AC1與過(guò)A點(diǎn)的三條共點(diǎn)的棱所成的角相等來(lái)求解即可.
解答:解:∵長(zhǎng)方體的十二條棱是三組平行的直線,∴過(guò)一個(gè)頂點(diǎn)與從該頂點(diǎn)出發(fā)的三條棱所成的角相等,就與所有棱所成的角相等,
不妨在長(zhǎng)方體的角上截取一個(gè)棱長(zhǎng)都為1的小正方體,如圖:
正方體的對(duì)角線AC1與過(guò)A點(diǎn)的三條棱所成的角相等,
且cosα=
AB
BC1
=
1
3
=
3
3

故答案是
3
3
點(diǎn)評(píng):本題主要考查異面直線所成的角的定義、長(zhǎng)方體的結(jié)構(gòu)特征及空間想象能力,想象在長(zhǎng)方體的角上截取小正方體來(lái)研究相關(guān)問(wèn)題是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

12、命題:“若空間兩條直線a,b分別垂直平面α,則a∥b”學(xué)生小夏這樣證明:
設(shè)a,b與面α分別相交于A、B,連接A、B,
∵a⊥α,b⊥α,AB?α…①
∴a⊥AB,b⊥AB…②
∴a∥b…③
這里的證明有兩個(gè)推理,即:
①?②和②?③.老師評(píng)改認(rèn)為小夏的證明推理不正確,這兩個(gè)推理中不正確的是
②?③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

1、若空間兩條直線a和b沒(méi)有公共點(diǎn),則a與b的位置關(guān)系是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若空間三條直線a、b、c滿足a⊥b,b∥c,則直線a與c( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若空間三條直線a、b、c滿足a⊥b,b∥c,則直線a與c( 。
A、一定平行B、一定相交C、一定是異面直線D、一定垂直

查看答案和解析>>

同步練習(xí)冊(cè)答案