20.不等式|x+1|•(2x-1)≥0的解集為( 。
A.{x|x≥$\frac{1}{2}$}B.{x|x≤-1或x≥$\frac{1}{2}$}C.{x|x=-1或x≥$\frac{1}{2}$}D.{x|x≤$\frac{1}{2}$或x≥-1}

分析 為了去掉絕對(duì)值符號(hào),當(dāng)x+1=0時(shí),即x=-1時(shí),不等式成立,當(dāng)x+1≠0時(shí),原不等式等價(jià)于2x-1≥0,解得x≥$\frac{1}{2}$,問(wèn)題得以解決.

解答 解:當(dāng)x+1=0時(shí),即x=-1時(shí),不等式成立,
當(dāng)x+1≠0時(shí),原不等式等價(jià)于2x-1≥0,解得x≥$\frac{1}{2}$,
故原不等式的解集為{x|x=-1或x≥$\frac{1}{2}$},
故選:C.

點(diǎn)評(píng) 本題主要考查絕對(duì)值不等式的解法,體現(xiàn)了分類討論、等價(jià)轉(zhuǎn)化的數(shù)學(xué)思想,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.雙曲線$M:{x^2}-\frac{y^2}{b^2}=1$的左,右焦點(diǎn)分別為F1,F(xiàn)2,記|F1F2|=2c,以坐標(biāo)原點(diǎn)O為圓心,c為半徑的圓與雙曲線M在第一象限的交點(diǎn)為P,若|PF1|=c+2,則P點(diǎn)的橫坐標(biāo)為( 。
A.$\frac{{\sqrt{3}+1}}{2}$B.$\frac{{\sqrt{3}+2}}{2}$C.$\frac{{\sqrt{3}+3}}{2}$D.$\frac{{3\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知雙曲線:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,焦距為2c,直線y=$\sqrt{3}$(x+c)與雙曲線的一個(gè)交點(diǎn)M滿足∠MF1F2=2∠MF2F1,則雙曲線的離心率為( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.$\sqrt{3}$+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知數(shù)列{an}中,a1=1,an+1=$\frac{a_n}{{{a_n}+3}}({n∈{N^*}})$.
(1)求證:$\left\{{\frac{1}{a_n}+\frac{1}{2}}\right\}$為等比數(shù)列,并求{an}的通項(xiàng)公式;
(2)數(shù)列{bn}滿足bn=(3n-2)•$\frac{n}{2^n}•{a_n}$,數(shù)列{bn}的前n項(xiàng)和為Tn,若不等式(-1)n•λ<Tn+$\frac{n}{{{2^{n-1}}}}$對(duì)一切n∈N*恒成立,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.設(shè)對(duì)任意實(shí)數(shù)x>y>0,若不等式x+2$\sqrt{xy}$>ay恒成立,則實(shí)數(shù)a的取值范圍為( 。
A.(-∞,0)B.(-∞,0]C.(-∞,3)D.(-∞,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.在雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0\;,\;b>0\;,\;c=\sqrt{{a^2}+{b^2}}})$中,已知c,a,b成等差數(shù)列,則該雙曲線的離心率等于( 。
A.$\frac{5}{3}$B.$\frac{{\sqrt{3}+1}}{2}$C.$\frac{5}{4}$D.$\frac{{\sqrt{5}+1}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.“p∨q為真”是“¬p為假”的( 。l件.
A.充分不必要B.必要不充分
C.充要D.既不充分也不必要

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的左、右焦點(diǎn)分別為F1、F2,其一條漸近線為x+$\sqrt{2}$y=0,點(diǎn)M在雙曲線上,且MF1⊥x軸,若F2同時(shí)為拋物線y2=12x的焦點(diǎn),則F1到直線F2M的距離為( 。
A.$\frac{{3\sqrt{6}}}{5}$B.$\frac{{5\sqrt{6}}}{6}$C.$\frac{5}{6}$D.$\frac{6}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.曲線y=x2與x=1及坐標(biāo)軸圍成的封閉區(qū)域?yàn)棣?SUB>1,不等式組$\left\{\begin{array}{l}{0≤x≤1}\\{0≤y≤1}\end{array}\right.$表示的平面區(qū)域?yàn)棣?SUB>2,在區(qū)域Ω2內(nèi)隨機(jī)取一點(diǎn),則該點(diǎn)是取自于區(qū)域Ω1的概率是(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{1}{4}$D.$\frac{2}{5}$

查看答案和解析>>

同步練習(xí)冊(cè)答案