19.已知橢圓C$:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的離心率為$\frac{{\sqrt{3}}}{2}$,點(diǎn)$(\sqrt{3},\frac{1}{2})$在橢圓C上.直線l過點(diǎn)(1,1),且與橢圓C交于A,B兩點(diǎn),線段AB的中點(diǎn)為M.
(I)求橢圓C的方程;
(Ⅱ)點(diǎn)O為坐標(biāo)原點(diǎn),延長線段OM與橢圓C交于點(diǎn)P,四邊形OAPB能否為平行四邊形?若能,求出此時直線l的方程,若不能,說明理由.

分析 (Ⅰ)根據(jù)題意,可得$\left\{\begin{array}{l}{e=\frac{c}{a}=\frac{\sqrt{3}}{2}}\\{\frac{3}{{a}^{2}}+\frac{1}{4^{2}}=1}\\{{a}^{2}+^{2}=c^2}\end{array}\right.$,解得a2與b2的值,代入橢圓的標(biāo)準(zhǔn)方程即可得答案;
(Ⅱ)根據(jù)題意,分2種情況討論,(1)當(dāng)直線l與x軸垂直時,分析可得直線l的方程為x=1滿足題意;(2)當(dāng)直線l與x軸不垂直時,設(shè)直線l為y=kx+m,分析A、B、M的坐標(biāo),將y=kx+m代入$\frac{x^2}{4}+{y^2}=1$.得(4k2+1)x2+8kmx+4m2-4=0,由根與系數(shù)的關(guān)系可得M的坐標(biāo),進(jìn)而由四邊形OAPB為平行四邊形當(dāng)且僅當(dāng)線段AB與線段OP互相平分可得P的坐標(biāo),代入橢圓的標(biāo)準(zhǔn)方程可得$\frac{{{{(-\frac{8km}{{4{k^2}+1}})}^2}}}{4}+{(\frac{2m}{{4{k^2}+1}})^2}=1$,進(jìn)而分析可得$\frac{{(16{k^2}+4){{(1-k)}^2}}}{{{{(4{k^2}+1)}^2}}}=1$,解可得k、m的值,即可得答案.

解答 解:(I)由題意得$\left\{\begin{array}{l}{e=\frac{c}{a}=\frac{\sqrt{3}}{2}}\\{\frac{3}{{a}^{2}}+\frac{1}{4^{2}}=1}\\{{a}^{2}+^{2}=c^2}\end{array}\right.$,解得a2=4,b2=1.
所以橢圓C的方程為$\frac{x^2}{4}+{y^2}=1$.…..(5分)
(Ⅱ)四邊形OAPB能為平行四邊形,分2種情況討論:
(1)當(dāng)直線l與x軸垂直時,直線l的方程為x=1滿足題意;
(2)當(dāng)直線l與x軸不垂直時,設(shè)直線l:y=kx+m,顯然k≠0,m≠0,A(x1,y1),B(x2,y2),M(xM,yM).
將y=kx+m代入$\frac{x^2}{4}+{y^2}=1$.得(4k2+1)x2+8kmx+4m2-4=0,$△={(8km)^2}-4(4{k^2}+1)(4{m^2}-4)>0,{x_1}+{x_2}=\frac{-8km}{{4{k^2}+1}}$.
故${x_M}=\frac{{{x_1}+{x_2}}}{2}=-\frac{4km}{{4{k^2}+1}}$,${y_M}=k{x_M}+m=\frac{m}{{4{k^2}+1}}$.
四邊形OAPB為平行四邊形當(dāng)且僅當(dāng)線段AB與線段OP互相平分,即$\left\{\begin{array}{l}{x_P}=2{x_M}\\{y_P}=2{y_M}.\end{array}\right.$.
則$\frac{{{{(-\frac{8km}{{4{k^2}+1}})}^2}}}{4}+{(\frac{2m}{{4{k^2}+1}})^2}=1$.
由直線l:y=kx+m(k≠0,m≠0),過點(diǎn)(1,1),得m=1-k.
則$\frac{{(16{k^2}+4){{(1-k)}^2}}}{{{{(4{k^2}+1)}^2}}}=1$,
則(4k2+1)(8k-3)=0.
則$k=\frac{3}{8},m=\frac{5}{8}$.滿足△>0.
所以直線l的方程為$y=\frac{3}{8}x+\frac{5}{8}$時,四邊形OAPB為平行四邊形.
綜上所述:直線l的方程為$y=\frac{3}{8}x+\frac{5}{8}$或x=1.…..(13分)

點(diǎn)評 本題考查橢圓與直線的位置關(guān)系與方程的綜合運(yùn)用,涉及直線與橢圓的位置關(guān)系時,需要考慮直線斜率不存在的情況.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在平面直角坐標(biāo)系中,橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的一個焦點(diǎn)為F($\sqrt{2}$,0),離心率為$\frac{\sqrt{6}}{3}$.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)過原點(diǎn)的直線與橢圓C交于A,B兩點(diǎn)(A,B不是橢圓C的頂點(diǎn)),點(diǎn)D在橢圓C上,且AD⊥AB,直線BD與x軸、y軸分別交于M、N兩點(diǎn),設(shè)直線BD,AM的斜率分別為k1,k2,證明:存在常數(shù)λ使得k1=λk2,并求出λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖所示,橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),A1、A2、B1、B2、F1、F2分別是其左右頂點(diǎn),上下頂點(diǎn)和左右焦點(diǎn),四邊形A1B1A2B2的面積是四邊形B1F2B2F1面積的2倍.
(1)求橢圓C的離心率;
(2)三角形B1B2A2的外接圓記為⊙M,若直線B1F2被⊙M截得的弦長為$\frac{13}{4}$,求⊙M的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知圓O:x2+y2=1與x軸交于A,B兩點(diǎn),橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率是$\frac{\sqrt{2}}{2}$,且與圓O恰有兩個公共點(diǎn).
(1)求橢圓的方程;
(2)如圖過點(diǎn)M(-2,0)作直線l與圓相切于點(diǎn)N,設(shè)橢圓的兩個焦點(diǎn)分別為F1,F(xiàn)2,求三角形△NF1F2的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.函數(shù)y=f(x)的圖象如圖,則(  )
A.f′(3)>3B.f′(3)<3C.f′(3)=3D.f′(3)的符號不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在梯形PBCD中,A是PB的中點(diǎn),DC∥PB,DC⊥CB,且PB=2BC=2DC=4(如圖1所示),將三角形PAD沿AD翻折,使PB=2(如圖2所示),E是線段PD上的一點(diǎn),且PE=2DE.
(Ⅰ)求四棱錐P-ABCD的體積;
(Ⅱ)在線段AB上是否存在一點(diǎn)F,使AE∥平面PCF?若存在,請指出點(diǎn)F的位置并證明,若不存在請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=$\frac{1-x}{1+{x}^{2}}$ex,求f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.一個幾何體的三視圖如圖所示,俯視圖為等邊三角形,若其側(cè)面積為12$\sqrt{3}$,則a是( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.$\sqrt{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.若2x-y+1≥0,2x+y≥0,且x≤1,則z=x+3y的最小值為-5.

查看答案和解析>>

同步練習(xí)冊答案