已知函數(shù)f(x)=+ln x(a≠0,a∈R).求函數(shù)f(x)的極值和單調(diào)區(qū)間.
的極小值為1;單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為

試題分析:先求導(dǎo)并整理變形,再令導(dǎo)數(shù)等于0,并求根。討論導(dǎo)數(shù)的正負(fù),導(dǎo)數(shù)大于0得增區(qū)間,導(dǎo)數(shù)小于0得減區(qū)間,根據(jù)單調(diào)性可得函數(shù)的極值。
因?yàn)?img src="http://thumb.1010pic.com/pic2/upload/papers/20140824/20140824052624019875.png" style="vertical-align:middle;" />,
,得,
的定義域?yàn)?img src="http://thumb.1010pic.com/pic2/upload/papers/20140824/20140824052624082566.png" style="vertical-align:middle;" />,
,隨x的變化情況如下表:

所以時(shí),的極小值為1.
的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)的極值;
(2)若對(duì),有成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)f(x)=ax3-x在R上為減函數(shù),則(  )
A.a(chǎn)≤0B.a(chǎn)<1C.a(chǎn)<0 D.a(chǎn)≤1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù),其中,則零點(diǎn)的個(gè)數(shù)是   (  )
A.0個(gè)或1個(gè)B.1個(gè)或2個(gè)C.2個(gè)D.3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=xlnx-x2.
(1)當(dāng)a=1時(shí),函數(shù)y=f(x)有幾個(gè)極值點(diǎn)?
(2)是否存在實(shí)數(shù)a,使函數(shù)f(x)=xlnx-x2有兩個(gè)極值?若存在,求實(shí)數(shù)a的取值范圍;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若a>0,b>0,且函數(shù)f(x)=4x3-ax2-2bx-2在x=1處有極值,則ab的最大值為(  )
A.2B.3C.6D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

函數(shù)上的最小值是          .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)是減函數(shù)的區(qū)間為 (     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若函數(shù)在區(qū)間上是單調(diào)遞增函數(shù),則實(shí)數(shù)的取值范圍是  

查看答案和解析>>

同步練習(xí)冊(cè)答案